Example gallery¶
Explore different Ordeq example pipelines.
-
Integration Docker
This example demonstrates how to integrate Ordeq with Docker to run pipelines in isolated container environments.
graph TB integration_docker.pipeline:hello_world@{shape: subroutine, label: "hello_world"} class integration_docker.pipeline:hello_world view classDef view fill:#00C853,color:#FFF -
Integration Marimo
Marimo is an open-source reactive Python notebook. An improved version of Jupyter notebooks, Marimo allows you to build data applications with interactive widgets and reactive cells.
-
Integration Streamlit
To run the Streamlit application:
graph TB integration_streamlit.catalog:checkbox --> integration_streamlit.pipeline:display_values integration_streamlit.catalog:slider --> integration_streamlit.pipeline:display_values integration_streamlit.pipeline:display_values@{shape: subroutine, label: "display_values"} integration_streamlit.catalog:checkbox@{shape: rect, label: "checkbox"} integration_streamlit.catalog:slider@{shape: rect, label: "slider"} class integration_streamlit.pipeline:display_values view class integration_streamlit.catalog:checkbox,integration_streamlit.catalog:slider io0 classDef io fill:#FFD43B classDef view fill:#00C853,color:#FFF classDef io0 fill:#66c2a5 -
Orchestration Kubeflow
This example demonstrates how to integrate Ordeq with Kubeflow Pipelines for orchestrating machine learning workflows in Kubernetes clusters.
graph TB ml_pipeline.catalog:csv_remote --> ml_pipeline.preprocessing:create_dataset ml_pipeline.preprocessing:create_dataset --> ml_pipeline.catalog:csv_local ml_pipeline.catalog:csv_local --> ml_pipeline.preprocessing:normalize_dataset ml_pipeline.catalog:scaler --> ml_pipeline.preprocessing:normalize_dataset ml_pipeline.preprocessing:normalize_dataset --> ml_pipeline.catalog:csv_normalized ml_pipeline.catalog:csv_normalized --> ml_pipeline.train:train_model ml_pipeline.catalog:n_neighbors --> ml_pipeline.train:train_model ml_pipeline.catalog:seed --> ml_pipeline.train:train_model ml_pipeline.train:train_model --> ml_pipeline.catalog:knn_model ml_pipeline.preprocessing:create_dataset@{shape: rounded, label: "create_dataset"} ml_pipeline.preprocessing:normalize_dataset@{shape: rounded, label: "normalize_dataset"} ml_pipeline.catalog:csv_local@{shape: rect, label: "csv_local"} ml_pipeline.train:train_model@{shape: rounded, label: "train_model"} ml_pipeline.catalog:csv_normalized@{shape: rect, label: "csv_normalized"} ml_pipeline.catalog:csv_remote@{shape: rect, label: "csv_remote"} ml_pipeline.catalog:knn_model@{shape: rect, label: "knn_model"} ml_pipeline.catalog:n_neighbors@{shape: rect, label: "n_neighbors"} ml_pipeline.catalog:scaler@{shape: rect, label: "scaler"} ml_pipeline.catalog:seed@{shape: rect, label: "seed"} class ml_pipeline.preprocessing:create_dataset,ml_pipeline.preprocessing:normalize_dataset,ml_pipeline.train:train_model node class ml_pipeline.catalog:csv_local,ml_pipeline.catalog:csv_normalized,ml_pipeline.catalog:csv_remote io1 class ml_pipeline.catalog:knn_model io2 class ml_pipeline.catalog:n_neighbors,ml_pipeline.catalog:scaler,ml_pipeline.catalog:seed io0 classDef node fill:#008AD7,color:#FFF classDef io fill:#FFD43B classDef io0 fill:#66c2a5 classDef io1 fill:#fc8d62 classDef io2 fill:#8da0cb -
Rag Pipeline Scaffold
This example demonstrates how to create a Retrieval-Augmented Generation (RAG) pipeline scaffold using Ordeq.
graph TB rag_pipeline.catalog:pdf_documents --> rag_pipeline.rag.indexer:create_vector_index rag_pipeline.catalog:llm_vision_retrieval_model --> rag_pipeline.rag.indexer:create_vector_index rag_pipeline.rag.indexer:create_vector_index --> rag_pipeline.catalog:index rag_pipeline.catalog:policies --> rag_pipeline.rag.policies:generate_questions rag_pipeline.rag.policies:generate_questions --> rag_pipeline.catalog:questions rag_pipeline.catalog:index --> rag_pipeline.rag.retrieval:retrieve rag_pipeline.catalog:questions --> rag_pipeline.rag.retrieval:retrieve rag_pipeline.catalog:llm_vision_retrieval_model --> rag_pipeline.rag.retrieval:retrieve rag_pipeline.rag.retrieval:retrieve --> rag_pipeline.catalog:retrieved_pages rag_pipeline.catalog:retrieved_pages --> rag_pipeline.rag.retrieval:filter_relevant rag_pipeline.catalog:llm_model --> rag_pipeline.rag.retrieval:filter_relevant rag_pipeline.rag.retrieval:filter_relevant --> rag_pipeline.catalog:relevant_pages rag_pipeline.catalog:questions --> rag_pipeline.rag.question_answering:question_answering rag_pipeline.catalog:relevant_pages --> rag_pipeline.rag.question_answering:question_answering rag_pipeline.catalog:llm_model --> rag_pipeline.rag.question_answering:question_answering rag_pipeline.rag.question_answering:question_answering --> rag_pipeline.catalog:llm_answers rag_pipeline.catalog:llm_answers --> rag_pipeline.rag.evaluation:evaluate_answers rag_pipeline.catalog:llm_model --> rag_pipeline.rag.evaluation:evaluate_answers rag_pipeline.rag.evaluation:evaluate_answers --> rag_pipeline.catalog:metrics rag_pipeline.catalog:llm_answers --> rag_pipeline.rag.annotation:annotate_documents rag_pipeline.catalog:pdf_documents --> rag_pipeline.rag.annotation:annotate_documents rag_pipeline.rag.annotation:annotate_documents --> rag_pipeline.catalog:pdfs_documents_annotated rag_pipeline.rag.indexer:create_vector_index@{shape: rounded, label: "create_vector_index"} rag_pipeline.rag.policies:generate_questions@{shape: rounded, label: "generate_questions"} rag_pipeline.rag.retrieval:retrieve@{shape: rounded, label: "retrieve"} rag_pipeline.rag.retrieval:filter_relevant@{shape: rounded, label: "filter_relevant"} rag_pipeline.catalog:retrieved_pages@{shape: rect, label: "retrieved_pages"} rag_pipeline.rag.question_answering:question_answering@{shape: rounded, label: "question_answering"} rag_pipeline.rag.evaluation:evaluate_answers@{shape: rounded, label: "evaluate_answers"} rag_pipeline.rag.annotation:annotate_documents@{shape: rounded, label: "annotate_documents"} rag_pipeline.catalog:index@{shape: rect, label: "index"} rag_pipeline.catalog:llm_answers@{shape: rect, label: "llm_answers"} rag_pipeline.catalog:llm_model@{shape: rect, label: "llm_model"} rag_pipeline.catalog:llm_vision_retrieval_model@{shape: rect, label: "llm_vision_retrieval_model"} rag_pipeline.catalog:metrics@{shape: rect, label: "metrics"} rag_pipeline.catalog:pdf_documents@{shape: rect, label: "pdf_documents"} rag_pipeline.catalog:pdfs_documents_annotated@{shape: rect, label: "pdfs_documents_annotated"} rag_pipeline.catalog:policies@{shape: rect, label: "policies"} rag_pipeline.catalog:questions@{shape: rect, label: "questions"} rag_pipeline.catalog:relevant_pages@{shape: rect, label: "relevant_pages"} class rag_pipeline.rag.indexer:create_vector_index,rag_pipeline.rag.policies:generate_questions,rag_pipeline.rag.retrieval:retrieve,rag_pipeline.rag.retrieval:filter_relevant,rag_pipeline.rag.question_answering:question_answering,rag_pipeline.rag.evaluation:evaluate_answers,rag_pipeline.rag.annotation:annotate_documents node class rag_pipeline.catalog:retrieved_pages,rag_pipeline.catalog:llm_answers,rag_pipeline.catalog:questions,rag_pipeline.catalog:relevant_pages io1 class rag_pipeline.catalog:index io0 class rag_pipeline.catalog:llm_model,rag_pipeline.catalog:llm_vision_retrieval_model io5 class rag_pipeline.catalog:metrics io3 class rag_pipeline.catalog:pdf_documents,rag_pipeline.catalog:pdfs_documents_annotated io4 class rag_pipeline.catalog:policies io2 classDef node fill:#008AD7,color:#FFF classDef io fill:#FFD43B classDef io0 fill:#66c2a5 classDef io1 fill:#fc8d62 classDef io2 fill:#8da0cb classDef io3 fill:#e78ac3 classDef io4 fill:#a6d854 classDef io5 fill:#ffd92f -
Starter Kedro Spaceflights
This project contains the Kedro spaceflights starter, migrated to Ordeq.
graph TB kedro_spaceflights.catalog:companies --> kedro_spaceflights.pipeline:preprocess_companies kedro_spaceflights.pipeline:preprocess_companies --> kedro_spaceflights.catalog:preprocessed_companies kedro_spaceflights.catalog:shuttles --> kedro_spaceflights.pipeline:preprocess_shuttles kedro_spaceflights.pipeline:preprocess_shuttles --> kedro_spaceflights.catalog:preprocessed_shuttles kedro_spaceflights.pipeline:preprocess_companies@{shape: rounded, label: "preprocess_companies"} kedro_spaceflights.pipeline:preprocess_shuttles@{shape: rounded, label: "preprocess_shuttles"} kedro_spaceflights.catalog:companies@{shape: rect, label: "companies"} kedro_spaceflights.catalog:preprocessed_companies@{shape: rect, label: "preprocessed_companies"} kedro_spaceflights.catalog:preprocessed_shuttles@{shape: rect, label: "preprocessed_shuttles"} kedro_spaceflights.catalog:shuttles@{shape: rect, label: "shuttles"} class kedro_spaceflights.pipeline:preprocess_companies,kedro_spaceflights.pipeline:preprocess_shuttles node class kedro_spaceflights.catalog:companies io0 class kedro_spaceflights.catalog:preprocessed_companies,kedro_spaceflights.catalog:preprocessed_shuttles io2 class kedro_spaceflights.catalog:shuttles io1 classDef node fill:#008AD7,color:#FFF classDef io fill:#FFD43B classDef io0 fill:#66c2a5 classDef io1 fill:#fc8d62 classDef io2 fill:#8da0cb -
Starter Nested Subpipelines
This example demonstrates how to create and use nested sub-pipelines in Ordeq.
graph TB -
Starter Package
This example demonstrates how to create a Python package using Ordeq.
graph TB starter_package.catalog:user --> starter_package.pipeline:parse_users starter_package.pipeline:parse_users --> starter_package.catalog:yaml starter_package.pipeline:parse_users@{shape: rounded, label: "parse_users"} starter_package.catalog:user@{shape: rect, label: "user"} starter_package.catalog:yaml@{shape: rect, label: "yaml"} class starter_package.pipeline:parse_users node class starter_package.catalog:user io0 class starter_package.catalog:yaml io1 classDef node fill:#008AD7,color:#FFF classDef io fill:#FFD43B classDef io0 fill:#66c2a5 classDef io1 fill:#fc8d62 -
Starter Single File
This is a simple example of an Ordeq pipeline defined in a single file.
graph TB single_file:user --> single_file:parse_users single_file:parse_users --> single_file:yaml single_file:parse_users@{shape: rounded, label: "parse_users"} single_file:user@{shape: rect, label: "user"} single_file:yaml@{shape: rect, label: "yaml"} class single_file:parse_users node class single_file:user io0 class single_file:yaml io1 classDef node fill:#008AD7,color:#FFF classDef io fill:#FFD43B classDef io0 fill:#66c2a5 classDef io1 fill:#fc8d62 -
Starter Subpipelines
This example demonstrates how to create and use sub-pipelines in Ordeq.
graph TB -
Testing Nodes
This example demonstrates how to test nodes.
graph TB testing_nodes.catalog:txs --> testing_nodes.pipeline:join_txs_and_clients testing_nodes.catalog:clients --> testing_nodes.pipeline:join_txs_and_clients testing_nodes.catalog:date --> testing_nodes.pipeline:join_txs_and_clients testing_nodes.pipeline:join_txs_and_clients --> testing_nodes.catalog:txs_and_clients testing_nodes.catalog:txs_and_clients --> testing_nodes.pipeline:aggregate_txs testing_nodes.pipeline:aggregate_txs --> testing_nodes.catalog:aggregated_txs testing_nodes.pipeline:join_txs_and_clients@{shape: rounded, label: "join_txs_and_clients"} testing_nodes.pipeline:aggregate_txs@{shape: rounded, label: "aggregate_txs"} testing_nodes.catalog:txs_and_clients@{shape: rect, label: "txs_and_clients"} testing_nodes.catalog:aggregated_txs@{shape: rect, label: "aggregated_txs"} testing_nodes.catalog:clients@{shape: rect, label: "clients"} testing_nodes.catalog:date@{shape: rect, label: "date"} testing_nodes.catalog:txs@{shape: rect, label: "txs"} class testing_nodes.pipeline:join_txs_and_clients,testing_nodes.pipeline:aggregate_txs node class testing_nodes.catalog:txs_and_clients,testing_nodes.catalog:aggregated_txs,testing_nodes.catalog:clients,testing_nodes.catalog:txs io1 class testing_nodes.catalog:date io0 classDef node fill:#008AD7,color:#FFF classDef io fill:#FFD43B classDef io0 fill:#66c2a5 classDef io1 fill:#fc8d62