Skip to content

UserInputBucketer

Bases: BaseBucketer

The UserInputBucketer transformer creates buckets by implementing user-defined boundaries.

Support: badge badge badge

This is a special bucketer that is not fitted but rather relies on pre-defined user input. The most common use-case is loading bucket mapping information previously fitted by other bucketers.

Example:

from skorecard import datasets
from skorecard.bucketers import AgglomerativeClusteringBucketer, UserInputBucketer

X, y = datasets.load_uci_credit_card(return_X_y=True)

ac_bucketer = AgglomerativeClusteringBucketer(n_bins=3, variables=['LIMIT_BAL'])
ac_bucketer.fit(X)
mapping = ac_bucketer.features_bucket_mapping_

ui_bucketer = UserInputBucketer(mapping)
new_X = ui_bucketer.fit_transform(X)
assert len(new_X['LIMIT_BAL'].unique()) == 3

#Map some values to the special buckets
specials = {
    "LIMIT_BAL":{
        "=50000":[50000],
        "in [20001,30000]":[20000,30000],
        }
}

ac_bucketer = AgglomerativeClusteringBucketer(n_bins=3, variables=['LIMIT_BAL'], specials = specials)
ac_bucketer.fit(X)
mapping = ac_bucketer.features_bucket_mapping_

ui_bucketer = UserInputBucketer(mapping)
new_X = ui_bucketer.fit_transform(X)
assert len(new_X['LIMIT_BAL'].unique()) == 5
Source code in skorecard/bucketers/bucketers.py
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
class UserInputBucketer(BaseBucketer):
    """
    The `UserInputBucketer` transformer creates buckets by implementing user-defined boundaries.

    Support: ![badge](https://img.shields.io/badge/numerical-true-green) ![badge](https://img.shields.io/badge/categorical-true-green) ![badge](https://img.shields.io/badge/supervised-false-blue)

    This is a special bucketer that is not fitted but rather relies
    on pre-defined user input. The most common use-case is loading
    bucket mapping information previously fitted by other bucketers.

    Example:

    ```python
    from skorecard import datasets
    from skorecard.bucketers import AgglomerativeClusteringBucketer, UserInputBucketer

    X, y = datasets.load_uci_credit_card(return_X_y=True)

    ac_bucketer = AgglomerativeClusteringBucketer(n_bins=3, variables=['LIMIT_BAL'])
    ac_bucketer.fit(X)
    mapping = ac_bucketer.features_bucket_mapping_

    ui_bucketer = UserInputBucketer(mapping)
    new_X = ui_bucketer.fit_transform(X)
    assert len(new_X['LIMIT_BAL'].unique()) == 3

    #Map some values to the special buckets
    specials = {
        "LIMIT_BAL":{
            "=50000":[50000],
            "in [20001,30000]":[20000,30000],
            }
    }

    ac_bucketer = AgglomerativeClusteringBucketer(n_bins=3, variables=['LIMIT_BAL'], specials = specials)
    ac_bucketer.fit(X)
    mapping = ac_bucketer.features_bucket_mapping_

    ui_bucketer = UserInputBucketer(mapping)
    new_X = ui_bucketer.fit_transform(X)
    assert len(new_X['LIMIT_BAL'].unique()) == 5
    ```

    """  # noqa

    def __init__(
        self, features_bucket_mapping=None, variables: List = [], remainder="passthrough", get_statistics=True
    ) -> None:
        """
        Initialise the user-defined boundaries with a dictionary.

        Notes:
        - features_bucket_mapping is stored without the trailing underscore (_) because it is not fitted.

        Args:
            features_bucket_mapping (None, Dict, FeaturesBucketMapping, str or Path): Contains the feature name and boundaries
                defined for this feature.
                If a dict, it will be converted to an internal FeaturesBucketMapping object.
                If a string or path, which will attempt to load the file as a yaml and convert to FeaturesBucketMapping object.
            variables (list): The features to bucket. Uses all features in features_bucket_mapping if not defined.
            remainder (str): How we want the non-specified columns to be transformed. It must be in ["passthrough", "drop"].
                passthrough (Default): all columns that were not specified in "variables" will be passed through.
                drop: all remaining columns that were not specified in "variables" will be dropped.
        """  # noqa
        # Assigning the variable in the init to the attribute with the same name is a requirement of
        # sklearn.base.BaseEstimator. See the notes in
        # https://scikit-learn.org/stable/modules/generated/sklearn.base.BaseEstimator.html#sklearn.base.BaseEstimator
        self.features_bucket_mapping = features_bucket_mapping
        self.remainder = remainder
        self.get_statistics = get_statistics

        self.variables = variables

        if features_bucket_mapping is None:
            self.features_bucket_mapping_ = FeaturesBucketMapping()
        elif isinstance(features_bucket_mapping, str):
            buckets_yaml = yaml.safe_load(open(features_bucket_mapping))
            self.features_bucket_mapping_ = FeaturesBucketMapping(buckets_yaml)
        elif isinstance(features_bucket_mapping, dict):
            self.features_bucket_mapping_ = FeaturesBucketMapping(features_bucket_mapping)
        elif isinstance(features_bucket_mapping, FeaturesBucketMapping):
            self.features_bucket_mapping_ = features_bucket_mapping
        else:
            try:
                buckets_yaml = yaml.safe_load(features_bucket_mapping)
                self.features_bucket_mapping_ = FeaturesBucketMapping(buckets_yaml)
            except Exception:
                raise TypeError(
                    "'features_bucket_mapping' must be a None, dict, str, path, or FeaturesBucketMapping instance"
                )

    def fit(self, X, y=None):
        """Init the class."""
        X = ensure_dataframe(X)
        if y is not None:
            assert len(y) == X.shape[0], "y and X not same length"
            # Store the classes seen during fit
            self.classes_ = unique_labels(y)

        # scikit-learn requires checking that X has same shape on transform
        # this is because scikit-learn is still positional based (no column names used)
        self.n_train_features_ = X.shape[1]

        # bucket tables can only be computed on fit().
        # so a user will have to .fit() if she/he wants .plot_buckets() and .bucket_table()
        self.bucket_tables_ = {}

        # and if user did not specify any variables
        # use all the variables defined in the features_bucket_mapping
        if self.variables == []:
            self.variables_ = list(self.features_bucket_mapping_.maps.keys())

        for feature in self.variables_:
            # Calculate the bucket table
            self.bucket_tables_[feature] = build_bucket_table(
                X,
                y,
                column=feature,
                bucket_mapping=self.features_bucket_mapping_.get(feature),
            )

        self._generate_summary(X, y)

        return self

    def _more_tags(self):
        """
        Estimator tags are annotations of estimators that allow programmatic inspection of their capabilities.

        See https://scikit-learn.org/stable/developers/develop.html#estimator-tags
        """  # noqa
        return {"binary_only": True, "allow_nan": True, "requires_fit": False}

__init__(features_bucket_mapping=None, variables=[], remainder='passthrough', get_statistics=True)

Initialise the user-defined boundaries with a dictionary.

Notes: - features_bucket_mapping is stored without the trailing underscore (_) because it is not fitted.

Parameters:

Name Type Description Default
features_bucket_mapping (None, Dict, FeaturesBucketMapping, str or Path)

Contains the feature name and boundaries defined for this feature. If a dict, it will be converted to an internal FeaturesBucketMapping object. If a string or path, which will attempt to load the file as a yaml and convert to FeaturesBucketMapping object.

None
variables list

The features to bucket. Uses all features in features_bucket_mapping if not defined.

[]
remainder str

How we want the non-specified columns to be transformed. It must be in ["passthrough", "drop"]. passthrough (Default): all columns that were not specified in "variables" will be passed through. drop: all remaining columns that were not specified in "variables" will be dropped.

'passthrough'
Source code in skorecard/bucketers/bucketers.py
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
def __init__(
    self, features_bucket_mapping=None, variables: List = [], remainder="passthrough", get_statistics=True
) -> None:
    """
    Initialise the user-defined boundaries with a dictionary.

    Notes:
    - features_bucket_mapping is stored without the trailing underscore (_) because it is not fitted.

    Args:
        features_bucket_mapping (None, Dict, FeaturesBucketMapping, str or Path): Contains the feature name and boundaries
            defined for this feature.
            If a dict, it will be converted to an internal FeaturesBucketMapping object.
            If a string or path, which will attempt to load the file as a yaml and convert to FeaturesBucketMapping object.
        variables (list): The features to bucket. Uses all features in features_bucket_mapping if not defined.
        remainder (str): How we want the non-specified columns to be transformed. It must be in ["passthrough", "drop"].
            passthrough (Default): all columns that were not specified in "variables" will be passed through.
            drop: all remaining columns that were not specified in "variables" will be dropped.
    """  # noqa
    # Assigning the variable in the init to the attribute with the same name is a requirement of
    # sklearn.base.BaseEstimator. See the notes in
    # https://scikit-learn.org/stable/modules/generated/sklearn.base.BaseEstimator.html#sklearn.base.BaseEstimator
    self.features_bucket_mapping = features_bucket_mapping
    self.remainder = remainder
    self.get_statistics = get_statistics

    self.variables = variables

    if features_bucket_mapping is None:
        self.features_bucket_mapping_ = FeaturesBucketMapping()
    elif isinstance(features_bucket_mapping, str):
        buckets_yaml = yaml.safe_load(open(features_bucket_mapping))
        self.features_bucket_mapping_ = FeaturesBucketMapping(buckets_yaml)
    elif isinstance(features_bucket_mapping, dict):
        self.features_bucket_mapping_ = FeaturesBucketMapping(features_bucket_mapping)
    elif isinstance(features_bucket_mapping, FeaturesBucketMapping):
        self.features_bucket_mapping_ = features_bucket_mapping
    else:
        try:
            buckets_yaml = yaml.safe_load(features_bucket_mapping)
            self.features_bucket_mapping_ = FeaturesBucketMapping(buckets_yaml)
        except Exception:
            raise TypeError(
                "'features_bucket_mapping' must be a None, dict, str, path, or FeaturesBucketMapping instance"
            )

fit(X, y=None)

Init the class.

Source code in skorecard/bucketers/bucketers.py
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
def fit(self, X, y=None):
    """Init the class."""
    X = ensure_dataframe(X)
    if y is not None:
        assert len(y) == X.shape[0], "y and X not same length"
        # Store the classes seen during fit
        self.classes_ = unique_labels(y)

    # scikit-learn requires checking that X has same shape on transform
    # this is because scikit-learn is still positional based (no column names used)
    self.n_train_features_ = X.shape[1]

    # bucket tables can only be computed on fit().
    # so a user will have to .fit() if she/he wants .plot_buckets() and .bucket_table()
    self.bucket_tables_ = {}

    # and if user did not specify any variables
    # use all the variables defined in the features_bucket_mapping
    if self.variables == []:
        self.variables_ = list(self.features_bucket_mapping_.maps.keys())

    for feature in self.variables_:
        # Calculate the bucket table
        self.bucket_tables_[feature] = build_bucket_table(
            X,
            y,
            column=feature,
            bucket_mapping=self.features_bucket_mapping_.get(feature),
        )

    self._generate_summary(X, y)

    return self