Skip to content

BucketingProcess

Bases: BaseEstimator, TransformerMixin, BucketTableMethod, PlotBucketMethod, PlotPreBucketMethod, SummaryMethod

A two-step bucketing pipeline allowing for pre-bucketing before bucketing.

Often you want to pre-bucket features (f.e. to 100 buckets) before bucketing to a smaller set. This brings some additional challenges around propagating specials and defining a bucketer that is able to go from raw data to final bucket. This class facilicates the process and also provides all regular methods and attributes:

  • .summary(): See which columns are bucketed
  • .plot_bucket(): Plot buckets of a column
  • .bucket_table(): Table with buckets of a column
  • .save_to_yaml(): Save information necessary for bucketing to a YAML file
  • .features_bucket_mapping_: Access bucketing information

Example:

from skorecard import datasets
from skorecard.bucketers import DecisionTreeBucketer, OptimalBucketer, AsIsCategoricalBucketer
from skorecard.pipeline import BucketingProcess
from sklearn.pipeline import make_pipeline

df = datasets.load_uci_credit_card(as_frame=True)
y = df["default"]
X = df.drop(columns=["default"])

num_cols = ["LIMIT_BAL", "BILL_AMT1"]
cat_cols = ["EDUCATION", "MARRIAGE"]

bucketing_process = BucketingProcess(
    specials={'LIMIT_BAL': {'=400000.0' : [400000.0]}},
    prebucketing_pipeline=make_pipeline(
        DecisionTreeBucketer(variables=num_cols, max_n_bins=100, min_bin_size=0.05),
        AsIsCategoricalBucketer(variables=cat_cols),
    ),
    bucketing_pipeline=make_pipeline(
        OptimalBucketer(variables=num_cols, max_n_bins=10, min_bin_size=0.05),
        OptimalBucketer(variables=cat_cols, variables_type='categorical', max_n_bins=10, min_bin_size=0.05),
    )
)

bucketing_process.fit(X, y)

# Details
bucketing_process.summary() # all vars, and # buckets
bucketing_process.bucket_table("LIMIT_BAL")
bucketing_process.plot_bucket("LIMIT_BAL")
bucketing_process.prebucket_table("LIMIT_BAL")
bucketing_process.plot_prebucket("LIMIT_BAL")
Source code in skorecard/pipeline/bucketing_process.py
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
class BucketingProcess(
    BaseEstimator,
    TransformerMixin,
    BucketTableMethod,
    PlotBucketMethod,
    PlotPreBucketMethod,
    SummaryMethod,
):
    """
    A two-step bucketing pipeline allowing for pre-bucketing before bucketing.

    Often you want to pre-bucket features (f.e. to 100 buckets) before bucketing to a smaller set.
    This brings some additional challenges around propagating specials and defining a bucketer that is able to go from raw data to final bucket.
    This class facilicates the process and also provides all regular methods and attributes:

    - `.summary()`: See which columns are bucketed
    - `.plot_bucket()`: Plot buckets of a column
    - `.bucket_table()`: Table with buckets of a column
    - `.save_to_yaml()`: Save information necessary for bucketing to a YAML file
    - `.features_bucket_mapping_`: Access bucketing information

    Example:

    ```python
    from skorecard import datasets
    from skorecard.bucketers import DecisionTreeBucketer, OptimalBucketer, AsIsCategoricalBucketer
    from skorecard.pipeline import BucketingProcess
    from sklearn.pipeline import make_pipeline

    df = datasets.load_uci_credit_card(as_frame=True)
    y = df["default"]
    X = df.drop(columns=["default"])

    num_cols = ["LIMIT_BAL", "BILL_AMT1"]
    cat_cols = ["EDUCATION", "MARRIAGE"]

    bucketing_process = BucketingProcess(
        specials={'LIMIT_BAL': {'=400000.0' : [400000.0]}},
        prebucketing_pipeline=make_pipeline(
            DecisionTreeBucketer(variables=num_cols, max_n_bins=100, min_bin_size=0.05),
            AsIsCategoricalBucketer(variables=cat_cols),
        ),
        bucketing_pipeline=make_pipeline(
            OptimalBucketer(variables=num_cols, max_n_bins=10, min_bin_size=0.05),
            OptimalBucketer(variables=cat_cols, variables_type='categorical', max_n_bins=10, min_bin_size=0.05),
        )
    )

    bucketing_process.fit(X, y)

    # Details
    bucketing_process.summary() # all vars, and # buckets
    bucketing_process.bucket_table("LIMIT_BAL")
    bucketing_process.plot_bucket("LIMIT_BAL")
    bucketing_process.prebucket_table("LIMIT_BAL")
    bucketing_process.plot_prebucket("LIMIT_BAL")
    ```
    """  # noqa

    def __init__(
        self,
        prebucketing_pipeline=make_pipeline(DecisionTreeBucketer(max_n_bins=50, min_bin_size=0.02)),
        bucketing_pipeline=make_pipeline(OptimalBucketer(max_n_bins=6, min_bin_size=0.05)),
        variables: List = [],
        specials: Dict = {},
        random_state: Optional[int] = None,
        remainder="passthrough",
    ):
        """
        Define a BucketingProcess to first prebucket and then bucket multiple columns in one go.

        Args:
            prebucketing_pipeline (Pipeline): The scikit-learn pipeline that does pre-bucketing.
                Defaults to an all-numeric DecisionTreeBucketer pipeline.
            bucketing_pipeline (Pipeline): The scikit-learn pipeline that does bucketing.
                Defaults to an all-numeric OptimalBucketer pipeline.
                Must transform same features as the prebucketing pipeline.
            variables (list): The features to bucket. Uses all features if not defined.
            specials: (nested) dictionary of special values that require their own binning.
                Will merge when specials are also defined in any bucketers in a (pre)bucketing pipeline, and overwrite in case there are shared keys.
                The dictionary has the following format:
                 {"<column name>" : {"name of special bucket" : <list with 1 or more values>}}
                For every feature that needs a special value, a dictionary must be passed as value.
                This dictionary contains a name of a bucket (key) and an array of unique values that should be put
                in that bucket.
                When special values are defined, they are not considered in the fitting procedure.
            remainder (str): How we want the non-specified columns to be transformed. It must be in ["passthrough", "drop"].
                passthrough (Default): all columns that were not specified in "variables" will be passed through.
                drop: all remaining columns that were not specified in "variables" will be dropped.
        """  # noqa
        # Save original input params
        # We overwrite the input later, so we need to save
        # original so we can clone instances
        # https://scikit-learn.org/dev/developers/develop.html#cloning
        # https://scikit-learn.org/dev/developers/develop.html#get-params-and-set-params
        # Assigning the variable in the init to the attribute with the same name is a requirement of
        # sklearn.base.BaseEstimator. See the notes in
        # https://scikit-learn.org/stable/modules/generated/sklearn.base.BaseEstimator.html#sklearn.base.BaseEstimator
        self.prebucketing_pipeline = prebucketing_pipeline
        self.bucketing_pipeline = bucketing_pipeline
        self.remainder = remainder
        self.variables = variables
        self.specials = specials
        self.random_state = random_state

    @property
    def name(self):
        """
        To be able to identity the bucketingprocess in a pipeline.
        """
        return "bucketingprocess"

    def fit(self, X, y=None):
        """
        Fit the prebucketing and bucketing pipeline with `X`, `y`.

        Args:
            X (pd.DataFrame): Data to fit on.
            y (np.array, optional): target. Defaults to None.
        """
        X = ensure_dataframe(X)

        # input validation
        assert self.remainder in ["passthrough", "drop"]

        # Convert to skorecard pipelines
        # This does some checks on the pipelines
        # and adds some convenience methods to the pipeline.
        self.pre_pipeline_ = to_skorecard_pipeline(deepcopy(self.prebucketing_pipeline))
        self.pipeline_ = to_skorecard_pipeline(deepcopy(self.bucketing_pipeline))

        # Add/Overwrite specials to all pre-bucketers
        for step in _get_all_steps(self.pre_pipeline_):
            if hasattr(step, "specials") and len(step.specials) != 0 and len(self.specials) != 0:
                # note, specials defined BucketingProcess level
                # will overwrite any specials on bucketer level.
                warnings.warn(f"Overwriting specials of {step} with specials of bucketingprocess", UserWarning)
                step.specials = {**step.specials, **self.specials}
            else:
                step.specials = self.specials

            if len(self.variables) != 0:
                if len(step.variables) != 0:
                    warnings.warn(f"Overwriting variables of {step} with variables of bucketingprocess", UserWarning)
                step.variables = self.variables

            # Overwrite random_state to bucketers
            if hasattr(step, "random_state") and self.random_state is not None:
                if step.random_state is not None:
                    warnings.warn(
                        f"Overwriting random_state of {step} with random_state of bucketingprocess", UserWarning
                    )
                step.random_state = self.random_state

        # Overwrite variables to all bucketers
        if len(self.variables) != 0:
            for step in _get_all_steps(self.pipeline_):
                if len(step.variables) != 0:
                    warnings.warn(f"Overwriting variables of {step} with variables of bucketingprocess", UserWarning)
                step.variables = self.variables

        # Overwrite random_state to bucketers
        for step in _get_all_steps(self.pipeline_):
            if hasattr(step, "random_state") and self.random_state is not None:
                if step.random_state is not None:
                    warnings.warn(
                        f"Overwriting random_state of {step} with random_state of bucketingprocess", UserWarning
                    )
                step.random_state = self.random_state

        self._prebucketing_specials = self.specials
        self._bucketing_specials = dict()  # will be determined later.

        # Fit the prebucketing pipeline
        X_prebucketed_ = self.pre_pipeline_.fit_transform(X, y)
        assert isinstance(X_prebucketed_, pd.DataFrame)

        # Calculate the prebucket tables.
        self.prebucket_tables_ = dict()
        for column in X.columns:
            if column in self.pre_pipeline_.features_bucket_mapping_.maps.keys():
                self.prebucket_tables_[column] = build_bucket_table(
                    X, y, column=column, bucket_mapping=self.pre_pipeline_.features_bucket_mapping_.get(column)
                )

        # Find the new bucket numbers of the specials after prebucketing,
        for var, var_specials in self._prebucketing_specials.items():
            bucket_labels = self.pre_pipeline_.features_bucket_mapping_.get(var).labels
            new_specials = _find_remapped_specials(bucket_labels, var_specials)
            if len(new_specials):
                self._bucketing_specials[var] = new_specials

        # Then assign the new specials to all bucketers in the bucketing pipeline
        for step in self.pipeline_.steps:
            if not isinstance(step, tuple):
                step.specials = self._bucketing_specials
            else:
                step[1].specials = self._bucketing_specials

        # Fit the bucketing pipeline
        # And save the bucket mapping
        self.pipeline_.fit(X_prebucketed_, y)

        # Make sure all columns that are bucketed have also been pre-bucketed.
        not_prebucketed = []
        for col in self.pipeline_.features_bucket_mapping_.columns:
            if self.pipeline_.features_bucket_mapping_.get(col).type == "numerical":
                if col not in self.pre_pipeline_.features_bucket_mapping_.columns:
                    not_prebucketed.append(col)
        if len(not_prebucketed):
            msg = "These numerical columns are bucketed but have not been pre-bucketed: "
            msg += f"{', '.join(not_prebucketed)}.\n"
            msg += "Consider adding a numerical bucketer to the prebucketing pipeline,"
            msg += "for example AsIsNumericalBucketer or DecisionTreeBucketer."
            raise NotPreBucketedError(msg)

        # Make sure all columns that have been pre-bucketed also have been bucketed
        not_bucketed = []
        for col in self.pre_pipeline_.features_bucket_mapping_.columns:
            if self.pre_pipeline_.features_bucket_mapping_.get(col).type == "numerical":
                if col not in self.pipeline_.features_bucket_mapping_.columns:
                    not_bucketed.append(col)
        if len(not_bucketed):
            msg = "These numerical columns are prebucketed but have not been bucketed: "
            msg += f"{', '.join(not_bucketed)}.\n"
            msg += "Consider updating the bucketing pipeline."
            raise NotBucketedError(msg)

        # calculate the bucket tables.
        self.bucket_tables_ = dict()
        for column in X.columns:
            if column in self.pipeline_.features_bucket_mapping_.maps.keys():
                self.bucket_tables_[column] = build_bucket_table(
                    X_prebucketed_,
                    y,
                    column=column,
                    bucket_mapping=self.pipeline_.features_bucket_mapping_.get(column),
                )

        # Calculate the summary
        self._generate_summary(X, y)

        return self

    def fit_interactive(self, X, y=None, mode="external", **server_kwargs):
        """
        Fit a bucketer and then interactive edit the fit using a dash app.

        Note we are using a [jupyterdash](https://medium.com/plotly/introducing-jupyterdash-811f1f57c02e) app,
        which supports 3 different modes:

        - 'external' (default): Start dash server and print URL
        - 'inline': Start dash app inside an Iframe in the jupyter notebook
        - 'jupyterlab': Start dash app as a new tab inside jupyterlab

        """
        # We need to make sure we only fit if not already fitted
        # This prevents a user losing manually defined boundaries
        # when re-running .fit_interactive()
        if not is_fitted(self):
            self.fit(X, y)

        self.app = JupyterDash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
        add_bucketing_process_layout(self)
        add_bucketing_process_callbacks(self, X, y)
        self.app.run_server(mode=mode, **server_kwargs)

    def transform(self, X):
        """
        Transform `X` through the prebucketing and bucketing pipelines.
        """
        check_is_fitted(self)
        X_prebucketed = self.pre_pipeline_.transform(X)

        new_X = self.pipeline_.transform(X_prebucketed)

        if self.remainder == "drop":
            return new_X[self.variables]
        else:
            return new_X

    def save_yml(self, fout: PathLike) -> None:
        """
        Save the features bucket to a yaml file.

        Args:
            fout: path for output file
        """
        check_is_fitted(self)
        fbm = self.features_bucket_mapping_
        if isinstance(fbm, dict):
            FeaturesBucketMapping(fbm).save_yml(fout)
        else:
            fbm.save_yml(fout)

    @property
    def features_bucket_mapping_(self):
        """
        Returns a `FeaturesBucketMapping` instance.

        In normal bucketers, you can access `.features_bucket_mapping_`
        to retrieve a `FeaturesBucketMapping` instance. This contains
        all the info you need to transform values into their buckets.

        In this class, we basically have a two step bucketing process:
        first prebucketing, and then we bucket the prebuckets.

        In order to still be able to use BucketingProcess as if it were a normal bucketer,
        we'll need to merge both into one.
        """
        check_is_fitted(self)

        return merge_features_bucket_mapping(
            self.pre_pipeline_.features_bucket_mapping_, self.pipeline_.features_bucket_mapping_
        )

    def prebucket_table(self, column: str) -> pd.DataFrame:
        """
        Generates the statistics for the buckets of a particular column.

        An example is seen below:

        pre-bucket | label      | Count | Count (%) | Non-event | Event | Event Rate | WoE   | IV   | bucket
        -----------|------------|-------|-----------|-----------|-------|------------|-------|------|------
        0          | (-inf, 1.0)| 479   | 7.98      | 300       | 179   |  37.37     |  0.73 | 0.05 | 0
        1          | [1.0, 2.0) | 370   | 6.17      | 233       | 137   |  37.03     |  0.71 | 0.04 | 0

        Args:
            column (str): The column we wish to analyse

        Returns:
            df (pd.DataFrame): A pandas dataframe of the format above
        """  # noqa
        check_is_fitted(self)
        if column not in self.prebucket_tables_.keys():
            raise ValueError(f"column '{column}' was not part of the pre-bucketing process")

        table = self.prebucket_tables_.get(column)
        table = table.rename(columns={"bucket_id": "pre-bucket"})

        # Find bucket for each pre-bucket
        bucket_mapping = self.pipeline_.features_bucket_mapping_.get(column)
        table["bucket"] = bucket_mapping.transform(table["pre-bucket"])

        # Find out missing bucket
        if -1 in table["pre-bucket"].values:
            table.loc[table["pre-bucket"] == -1, "bucket"] = bucket_mapping.transform([np.nan])[0]

        # Find out the 'other' bucket
        if bucket_mapping.type == "categorical" and -2 in table["pre-bucket"].values:
            something_random = "84a088e251d2fa058f37145222e536dc"
            table.loc[table["pre-bucket"] == -2, "bucket"] = bucket_mapping.transform([something_random])[0]

        return table

    def _more_tags(self):
        """
        Estimator tags are annotations of estimators that allow programmatic inspection of their capabilities.

        See https://scikit-learn.org/stable/developers/develop.html#estimator-tags
        """  # noqa
        return {"binary_only": True}

features_bucket_mapping_ property

Returns a FeaturesBucketMapping instance.

In normal bucketers, you can access .features_bucket_mapping_ to retrieve a FeaturesBucketMapping instance. This contains all the info you need to transform values into their buckets.

In this class, we basically have a two step bucketing process: first prebucketing, and then we bucket the prebuckets.

In order to still be able to use BucketingProcess as if it were a normal bucketer, we'll need to merge both into one.

name property

To be able to identity the bucketingprocess in a pipeline.

__init__(prebucketing_pipeline=make_pipeline(DecisionTreeBucketer(max_n_bins=50, min_bin_size=0.02)), bucketing_pipeline=make_pipeline(OptimalBucketer(max_n_bins=6, min_bin_size=0.05)), variables=[], specials={}, random_state=None, remainder='passthrough')

Define a BucketingProcess to first prebucket and then bucket multiple columns in one go.

Parameters:

Name Type Description Default
prebucketing_pipeline Pipeline

The scikit-learn pipeline that does pre-bucketing. Defaults to an all-numeric DecisionTreeBucketer pipeline.

make_pipeline(DecisionTreeBucketer(max_n_bins=50, min_bin_size=0.02))
bucketing_pipeline Pipeline

The scikit-learn pipeline that does bucketing. Defaults to an all-numeric OptimalBucketer pipeline. Must transform same features as the prebucketing pipeline.

make_pipeline(OptimalBucketer(max_n_bins=6, min_bin_size=0.05))
variables list

The features to bucket. Uses all features if not defined.

[]
specials Dict

(nested) dictionary of special values that require their own binning. Will merge when specials are also defined in any bucketers in a (pre)bucketing pipeline, and overwrite in case there are shared keys. The dictionary has the following format: {"" : {"name of special bucket" : }} For every feature that needs a special value, a dictionary must be passed as value. This dictionary contains a name of a bucket (key) and an array of unique values that should be put in that bucket. When special values are defined, they are not considered in the fitting procedure.

{}
remainder str

How we want the non-specified columns to be transformed. It must be in ["passthrough", "drop"]. passthrough (Default): all columns that were not specified in "variables" will be passed through. drop: all remaining columns that were not specified in "variables" will be dropped.

'passthrough'
Source code in skorecard/pipeline/bucketing_process.py
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
def __init__(
    self,
    prebucketing_pipeline=make_pipeline(DecisionTreeBucketer(max_n_bins=50, min_bin_size=0.02)),
    bucketing_pipeline=make_pipeline(OptimalBucketer(max_n_bins=6, min_bin_size=0.05)),
    variables: List = [],
    specials: Dict = {},
    random_state: Optional[int] = None,
    remainder="passthrough",
):
    """
    Define a BucketingProcess to first prebucket and then bucket multiple columns in one go.

    Args:
        prebucketing_pipeline (Pipeline): The scikit-learn pipeline that does pre-bucketing.
            Defaults to an all-numeric DecisionTreeBucketer pipeline.
        bucketing_pipeline (Pipeline): The scikit-learn pipeline that does bucketing.
            Defaults to an all-numeric OptimalBucketer pipeline.
            Must transform same features as the prebucketing pipeline.
        variables (list): The features to bucket. Uses all features if not defined.
        specials: (nested) dictionary of special values that require their own binning.
            Will merge when specials are also defined in any bucketers in a (pre)bucketing pipeline, and overwrite in case there are shared keys.
            The dictionary has the following format:
             {"<column name>" : {"name of special bucket" : <list with 1 or more values>}}
            For every feature that needs a special value, a dictionary must be passed as value.
            This dictionary contains a name of a bucket (key) and an array of unique values that should be put
            in that bucket.
            When special values are defined, they are not considered in the fitting procedure.
        remainder (str): How we want the non-specified columns to be transformed. It must be in ["passthrough", "drop"].
            passthrough (Default): all columns that were not specified in "variables" will be passed through.
            drop: all remaining columns that were not specified in "variables" will be dropped.
    """  # noqa
    # Save original input params
    # We overwrite the input later, so we need to save
    # original so we can clone instances
    # https://scikit-learn.org/dev/developers/develop.html#cloning
    # https://scikit-learn.org/dev/developers/develop.html#get-params-and-set-params
    # Assigning the variable in the init to the attribute with the same name is a requirement of
    # sklearn.base.BaseEstimator. See the notes in
    # https://scikit-learn.org/stable/modules/generated/sklearn.base.BaseEstimator.html#sklearn.base.BaseEstimator
    self.prebucketing_pipeline = prebucketing_pipeline
    self.bucketing_pipeline = bucketing_pipeline
    self.remainder = remainder
    self.variables = variables
    self.specials = specials
    self.random_state = random_state

fit(X, y=None)

Fit the prebucketing and bucketing pipeline with X, y.

Parameters:

Name Type Description Default
X DataFrame

Data to fit on.

required
y array

target. Defaults to None.

None
Source code in skorecard/pipeline/bucketing_process.py
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
def fit(self, X, y=None):
    """
    Fit the prebucketing and bucketing pipeline with `X`, `y`.

    Args:
        X (pd.DataFrame): Data to fit on.
        y (np.array, optional): target. Defaults to None.
    """
    X = ensure_dataframe(X)

    # input validation
    assert self.remainder in ["passthrough", "drop"]

    # Convert to skorecard pipelines
    # This does some checks on the pipelines
    # and adds some convenience methods to the pipeline.
    self.pre_pipeline_ = to_skorecard_pipeline(deepcopy(self.prebucketing_pipeline))
    self.pipeline_ = to_skorecard_pipeline(deepcopy(self.bucketing_pipeline))

    # Add/Overwrite specials to all pre-bucketers
    for step in _get_all_steps(self.pre_pipeline_):
        if hasattr(step, "specials") and len(step.specials) != 0 and len(self.specials) != 0:
            # note, specials defined BucketingProcess level
            # will overwrite any specials on bucketer level.
            warnings.warn(f"Overwriting specials of {step} with specials of bucketingprocess", UserWarning)
            step.specials = {**step.specials, **self.specials}
        else:
            step.specials = self.specials

        if len(self.variables) != 0:
            if len(step.variables) != 0:
                warnings.warn(f"Overwriting variables of {step} with variables of bucketingprocess", UserWarning)
            step.variables = self.variables

        # Overwrite random_state to bucketers
        if hasattr(step, "random_state") and self.random_state is not None:
            if step.random_state is not None:
                warnings.warn(
                    f"Overwriting random_state of {step} with random_state of bucketingprocess", UserWarning
                )
            step.random_state = self.random_state

    # Overwrite variables to all bucketers
    if len(self.variables) != 0:
        for step in _get_all_steps(self.pipeline_):
            if len(step.variables) != 0:
                warnings.warn(f"Overwriting variables of {step} with variables of bucketingprocess", UserWarning)
            step.variables = self.variables

    # Overwrite random_state to bucketers
    for step in _get_all_steps(self.pipeline_):
        if hasattr(step, "random_state") and self.random_state is not None:
            if step.random_state is not None:
                warnings.warn(
                    f"Overwriting random_state of {step} with random_state of bucketingprocess", UserWarning
                )
            step.random_state = self.random_state

    self._prebucketing_specials = self.specials
    self._bucketing_specials = dict()  # will be determined later.

    # Fit the prebucketing pipeline
    X_prebucketed_ = self.pre_pipeline_.fit_transform(X, y)
    assert isinstance(X_prebucketed_, pd.DataFrame)

    # Calculate the prebucket tables.
    self.prebucket_tables_ = dict()
    for column in X.columns:
        if column in self.pre_pipeline_.features_bucket_mapping_.maps.keys():
            self.prebucket_tables_[column] = build_bucket_table(
                X, y, column=column, bucket_mapping=self.pre_pipeline_.features_bucket_mapping_.get(column)
            )

    # Find the new bucket numbers of the specials after prebucketing,
    for var, var_specials in self._prebucketing_specials.items():
        bucket_labels = self.pre_pipeline_.features_bucket_mapping_.get(var).labels
        new_specials = _find_remapped_specials(bucket_labels, var_specials)
        if len(new_specials):
            self._bucketing_specials[var] = new_specials

    # Then assign the new specials to all bucketers in the bucketing pipeline
    for step in self.pipeline_.steps:
        if not isinstance(step, tuple):
            step.specials = self._bucketing_specials
        else:
            step[1].specials = self._bucketing_specials

    # Fit the bucketing pipeline
    # And save the bucket mapping
    self.pipeline_.fit(X_prebucketed_, y)

    # Make sure all columns that are bucketed have also been pre-bucketed.
    not_prebucketed = []
    for col in self.pipeline_.features_bucket_mapping_.columns:
        if self.pipeline_.features_bucket_mapping_.get(col).type == "numerical":
            if col not in self.pre_pipeline_.features_bucket_mapping_.columns:
                not_prebucketed.append(col)
    if len(not_prebucketed):
        msg = "These numerical columns are bucketed but have not been pre-bucketed: "
        msg += f"{', '.join(not_prebucketed)}.\n"
        msg += "Consider adding a numerical bucketer to the prebucketing pipeline,"
        msg += "for example AsIsNumericalBucketer or DecisionTreeBucketer."
        raise NotPreBucketedError(msg)

    # Make sure all columns that have been pre-bucketed also have been bucketed
    not_bucketed = []
    for col in self.pre_pipeline_.features_bucket_mapping_.columns:
        if self.pre_pipeline_.features_bucket_mapping_.get(col).type == "numerical":
            if col not in self.pipeline_.features_bucket_mapping_.columns:
                not_bucketed.append(col)
    if len(not_bucketed):
        msg = "These numerical columns are prebucketed but have not been bucketed: "
        msg += f"{', '.join(not_bucketed)}.\n"
        msg += "Consider updating the bucketing pipeline."
        raise NotBucketedError(msg)

    # calculate the bucket tables.
    self.bucket_tables_ = dict()
    for column in X.columns:
        if column in self.pipeline_.features_bucket_mapping_.maps.keys():
            self.bucket_tables_[column] = build_bucket_table(
                X_prebucketed_,
                y,
                column=column,
                bucket_mapping=self.pipeline_.features_bucket_mapping_.get(column),
            )

    # Calculate the summary
    self._generate_summary(X, y)

    return self

fit_interactive(X, y=None, mode='external', **server_kwargs)

Fit a bucketer and then interactive edit the fit using a dash app.

Note we are using a jupyterdash app, which supports 3 different modes:

  • 'external' (default): Start dash server and print URL
  • 'inline': Start dash app inside an Iframe in the jupyter notebook
  • 'jupyterlab': Start dash app as a new tab inside jupyterlab
Source code in skorecard/pipeline/bucketing_process.py
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
def fit_interactive(self, X, y=None, mode="external", **server_kwargs):
    """
    Fit a bucketer and then interactive edit the fit using a dash app.

    Note we are using a [jupyterdash](https://medium.com/plotly/introducing-jupyterdash-811f1f57c02e) app,
    which supports 3 different modes:

    - 'external' (default): Start dash server and print URL
    - 'inline': Start dash app inside an Iframe in the jupyter notebook
    - 'jupyterlab': Start dash app as a new tab inside jupyterlab

    """
    # We need to make sure we only fit if not already fitted
    # This prevents a user losing manually defined boundaries
    # when re-running .fit_interactive()
    if not is_fitted(self):
        self.fit(X, y)

    self.app = JupyterDash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
    add_bucketing_process_layout(self)
    add_bucketing_process_callbacks(self, X, y)
    self.app.run_server(mode=mode, **server_kwargs)

prebucket_table(column)

Generates the statistics for the buckets of a particular column.

An example is seen below:

pre-bucket label Count Count (%) Non-event Event Event Rate WoE IV bucket
0 (-inf, 1.0) 479 7.98 300 179 37.37 0.73 0.05 0
1 [1.0, 2.0) 370 6.17 233 137 37.03 0.71 0.04 0

Parameters:

Name Type Description Default
column str

The column we wish to analyse

required

Returns:

Name Type Description
df DataFrame

A pandas dataframe of the format above

Source code in skorecard/pipeline/bucketing_process.py
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
def prebucket_table(self, column: str) -> pd.DataFrame:
    """
    Generates the statistics for the buckets of a particular column.

    An example is seen below:

    pre-bucket | label      | Count | Count (%) | Non-event | Event | Event Rate | WoE   | IV   | bucket
    -----------|------------|-------|-----------|-----------|-------|------------|-------|------|------
    0          | (-inf, 1.0)| 479   | 7.98      | 300       | 179   |  37.37     |  0.73 | 0.05 | 0
    1          | [1.0, 2.0) | 370   | 6.17      | 233       | 137   |  37.03     |  0.71 | 0.04 | 0

    Args:
        column (str): The column we wish to analyse

    Returns:
        df (pd.DataFrame): A pandas dataframe of the format above
    """  # noqa
    check_is_fitted(self)
    if column not in self.prebucket_tables_.keys():
        raise ValueError(f"column '{column}' was not part of the pre-bucketing process")

    table = self.prebucket_tables_.get(column)
    table = table.rename(columns={"bucket_id": "pre-bucket"})

    # Find bucket for each pre-bucket
    bucket_mapping = self.pipeline_.features_bucket_mapping_.get(column)
    table["bucket"] = bucket_mapping.transform(table["pre-bucket"])

    # Find out missing bucket
    if -1 in table["pre-bucket"].values:
        table.loc[table["pre-bucket"] == -1, "bucket"] = bucket_mapping.transform([np.nan])[0]

    # Find out the 'other' bucket
    if bucket_mapping.type == "categorical" and -2 in table["pre-bucket"].values:
        something_random = "84a088e251d2fa058f37145222e536dc"
        table.loc[table["pre-bucket"] == -2, "bucket"] = bucket_mapping.transform([something_random])[0]

    return table

save_yml(fout)

Save the features bucket to a yaml file.

Parameters:

Name Type Description Default
fout PathLike

path for output file

required
Source code in skorecard/pipeline/bucketing_process.py
322
323
324
325
326
327
328
329
330
331
332
333
334
def save_yml(self, fout: PathLike) -> None:
    """
    Save the features bucket to a yaml file.

    Args:
        fout: path for output file
    """
    check_is_fitted(self)
    fbm = self.features_bucket_mapping_
    if isinstance(fbm, dict):
        FeaturesBucketMapping(fbm).save_yml(fout)
    else:
        fbm.save_yml(fout)

transform(X)

Transform X through the prebucketing and bucketing pipelines.

Source code in skorecard/pipeline/bucketing_process.py
308
309
310
311
312
313
314
315
316
317
318
319
320
def transform(self, X):
    """
    Transform `X` through the prebucketing and bucketing pipelines.
    """
    check_is_fitted(self)
    X_prebucketed = self.pre_pipeline_.transform(X)

    new_X = self.pipeline_.transform(X_prebucketed)

    if self.remainder == "drop":
        return new_X[self.variables]
    else:
        return new_X