Skip to content

SkorecardPipeline

Bases: Pipeline, PlotBucketMethod, BucketTableMethod, SummaryMethod

A sklearn Pipeline with several attribute and methods added.

This Pipeline of bucketers behaves more like a bucketer and adds:

  • .summary(): See which columns are bucketed
  • .plot_bucket(): Plot buckets of a column
  • .bucket_table(): Table with buckets of a column
  • .save_to_yaml(): Save information necessary for bucketing to a YAML file
  • .features_bucket_mapping_: Access bucketing information
  • .fit_interactive(): Edit fitted buckets interactively in a dash app
from skorecard.pipeline.pipeline import SkorecardPipeline
from skorecard.bucketers import DecisionTreeBucketer, OrdinalCategoricalBucketer
from skorecard import datasets

pipe = SkorecardPipeline([
    ('decisiontreebucketer', DecisionTreeBucketer(variables = ["LIMIT_BAL", "BILL_AMT1"],max_n_bins=5)),
    ('ordinalcategoricalbucketer', OrdinalCategoricalBucketer(variables = ["EDUCATION", "MARRIAGE"], tol =0.05)),
])

df = datasets.load_uci_credit_card(as_frame=True)
features = ["LIMIT_BAL", "BILL_AMT1", "EDUCATION", "MARRIAGE"]
X = df[features]
y = df["default"].values

pipe.fit(X, y)
pipe.bucket_table('LIMIT_BAL')
Source code in skorecard/pipeline/pipeline.py
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
class SkorecardPipeline(Pipeline, PlotBucketMethod, BucketTableMethod, SummaryMethod):
    """
    A sklearn Pipeline with several attribute and methods added.

    This Pipeline of bucketers behaves more like a bucketer and adds:

    - `.summary()`: See which columns are bucketed
    - `.plot_bucket()`: Plot buckets of a column
    - `.bucket_table()`: Table with buckets of a column
    - `.save_to_yaml()`: Save information necessary for bucketing to a YAML file
    - `.features_bucket_mapping_`: Access bucketing information
    - `.fit_interactive()`: Edit fitted buckets interactively in a dash app

    ```python
    from skorecard.pipeline.pipeline import SkorecardPipeline
    from skorecard.bucketers import DecisionTreeBucketer, OrdinalCategoricalBucketer
    from skorecard import datasets

    pipe = SkorecardPipeline([
        ('decisiontreebucketer', DecisionTreeBucketer(variables = ["LIMIT_BAL", "BILL_AMT1"],max_n_bins=5)),
        ('ordinalcategoricalbucketer', OrdinalCategoricalBucketer(variables = ["EDUCATION", "MARRIAGE"], tol =0.05)),
    ])

    df = datasets.load_uci_credit_card(as_frame=True)
    features = ["LIMIT_BAL", "BILL_AMT1", "EDUCATION", "MARRIAGE"]
    X = df[features]
    y = df["default"].values

    pipe.fit(X, y)
    pipe.bucket_table('LIMIT_BAL')
    ```
    """

    def __init__(self, steps, *, memory=None, verbose=False):
        """
        Wraps sklearn Pipeline.
        """
        super().__init__(steps=steps, memory=memory, verbose=verbose)
        self._check_pipeline_all_bucketers(self)
        self._check_pipeline_duplicated_columns(self)

    @property
    def features_bucket_mapping_(self):
        """
        Retrieve features bucket mapping.
        """
        check_is_fitted(self.steps[-1][1])
        return get_features_bucket_mapping(Pipeline(self.steps))

    @property
    def bucket_tables_(self):
        """
        Retrieve bucket tables.

        Used by .bucket_table()
        """
        check_is_fitted(self.steps[-1][1])
        bucket_tables = dict()
        for step in self.steps:
            bucket_tables.update(step[1].bucket_tables_)
        return bucket_tables

    @property
    def summary_dict_(self) -> Dict:
        """
        Retrieve summary_dicts and combine.

        Used by .summary()
        """
        summary_dict = {}
        for step in self.steps:
            summary_dict.update(step[1].summary_dict_)
        return summary_dict

    def save_yml(self, fout):
        """
        Save the features bucket to a yaml file.

        Args:
            fout: file output
        """
        check_is_fitted(self.steps[-1][1])
        self.features_bucket_mapping_.save_yml(fout)

    @staticmethod
    def _check_pipeline_duplicated_columns(pipeline: Pipeline) -> None:
        """
        Check that the pipeline has no duplicated columns.

        This check only works on fitted pipelines!
        """
        assert isinstance(pipeline, Pipeline)

        bucketers_vars = []
        bucketers_on_all = []
        bucketers_with_vars = []

        for step in _get_all_steps(pipeline):
            if is_fitted(step):
                if hasattr(step, "variables_"):
                    if len(step.variables_) == 0:
                        bucketers_vars += ["**all**"]
                        bucketers_on_all += [step]
                    else:
                        bucketers_vars += step.variables_
                        bucketers_with_vars += [step]
            else:
                if hasattr(step, "variables"):
                    if len(step.variables) == 0:
                        bucketers_vars += ["**all**"]
                        bucketers_on_all += [step]
                    else:
                        bucketers_vars += step.variables
                        bucketers_with_vars += [step]

        if len(list(set(bucketers_vars))) > 1 and "**all**" in list(set(bucketers_vars)):
            msg = "A SkorecardPipeline should bucket each feature only once.\n"
            msg += f"These bucketers bucket all features: {bucketers_on_all}\n"
            msg += f"While these bucket specific ones: {bucketers_with_vars}\n"
            msg += "This means some features would have been bucketed sequentially."
            msg += "To solve this, either use a BucketingProcess, or remove the duplicates from one of the bucketers."
            msg += "Remember that if you don't specify 'variables', a bucketer will bucket all columns."
            raise BucketingPipelineError(msg)

        if len(set(bucketers_vars)) != len(bucketers_vars):
            values, counts = np.unique(bucketers_vars, return_counts=True)
            duplicates = list(set(values[counts > 1]))

            msg = "A SkorecardPipeline should bucket each feature only once. "
            msg += f"The features {duplicates} appear in multiple bucketers, "
            msg += "meaning they would have been bucketed sequentially."
            msg += "To solve this, either use a BucketingProcess, or remove the duplicates from one of the bucketers."
            msg += "Remember that if you don't specify 'variables', a bucketer will bucket all columns."
            raise BucketingPipelineError(msg)

    @staticmethod
    def _check_pipeline_all_bucketers(pipeline: Pipeline) -> None:
        """
        Ensure all specified bucketing steps are skorecard bucketers.

        Args:
            pipeline: scikit-learn pipeline.
        """
        assert isinstance(pipeline, Pipeline)

        for step in _get_all_steps(pipeline):
            if all(x not in str(type(step)) for x in ["bucketing_process", "skorecard.bucketers"]):
                msg = "All bucketing steps must be skorecard bucketers."
                msg += f"Remove {step} from the pipeline."
                raise NotBucketObjectError(msg)

    def fit_interactive(self, X, y=None, mode="external"):
        """
        Fit a bucketer and then interactively edit the fit using a dash app.

        Note we are using a [jupyterdash](https://medium.com/plotly/introducing-jupyterdash-811f1f57c02e) app,
        which supports 3 different modes:

        - 'external' (default): Start dash server and print URL
        - 'inline': Start dash app inside an Iframe in the jupyter notebook
        - 'jupyterlab': Start dash app as a new tab inside jupyterlab

        """
        # We need to make sure we only fit if not already fitted
        # This prevents a user losing manually defined boundaries
        # when re-running .fit_interactive()
        if not is_fitted(self):
            self.fit(X, y)

        self.app = JupyterDash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
        add_basic_layout(self)
        add_bucketing_callbacks(self, X, y)
        self.app.run_server(mode=mode)

    def _update_column_fit(self, X, y, feature, special, splits, right, generate_summary=False):
        """
        Extract out part of the fit for a column.

        Useful when we want to interactively update the fit.
        """
        for step in self.steps:
            if feature in step[1].variables:
                step[1]._update_column_fit(
                    X=X,
                    y=y,
                    feature=feature,
                    special=special,
                    splits=splits,
                    right=right,
                    generate_summary=generate_summary,
                )

bucket_tables_ property

Retrieve bucket tables.

Used by .bucket_table()

features_bucket_mapping_ property

Retrieve features bucket mapping.

summary_dict_: Dict property

Retrieve summary_dicts and combine.

Used by .summary()

__init__(steps, *, memory=None, verbose=False)

Wraps sklearn Pipeline.

Source code in skorecard/pipeline/pipeline.py
267
268
269
270
271
272
273
def __init__(self, steps, *, memory=None, verbose=False):
    """
    Wraps sklearn Pipeline.
    """
    super().__init__(steps=steps, memory=memory, verbose=verbose)
    self._check_pipeline_all_bucketers(self)
    self._check_pipeline_duplicated_columns(self)

fit_interactive(X, y=None, mode='external')

Fit a bucketer and then interactively edit the fit using a dash app.

Note we are using a jupyterdash app, which supports 3 different modes:

  • 'external' (default): Start dash server and print URL
  • 'inline': Start dash app inside an Iframe in the jupyter notebook
  • 'jupyterlab': Start dash app as a new tab inside jupyterlab
Source code in skorecard/pipeline/pipeline.py
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
def fit_interactive(self, X, y=None, mode="external"):
    """
    Fit a bucketer and then interactively edit the fit using a dash app.

    Note we are using a [jupyterdash](https://medium.com/plotly/introducing-jupyterdash-811f1f57c02e) app,
    which supports 3 different modes:

    - 'external' (default): Start dash server and print URL
    - 'inline': Start dash app inside an Iframe in the jupyter notebook
    - 'jupyterlab': Start dash app as a new tab inside jupyterlab

    """
    # We need to make sure we only fit if not already fitted
    # This prevents a user losing manually defined boundaries
    # when re-running .fit_interactive()
    if not is_fitted(self):
        self.fit(X, y)

    self.app = JupyterDash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
    add_basic_layout(self)
    add_bucketing_callbacks(self, X, y)
    self.app.run_server(mode=mode)

save_yml(fout)

Save the features bucket to a yaml file.

Parameters:

Name Type Description Default
fout

file output

required
Source code in skorecard/pipeline/pipeline.py
308
309
310
311
312
313
314
315
316
def save_yml(self, fout):
    """
    Save the features bucket to a yaml file.

    Args:
        fout: file output
    """
    check_is_fitted(self.steps[-1][1])
    self.features_bucket_mapping_.save_yml(fout)