Skip to content

Model Interpretation using SHAP

The aim of this module is to provide tools for model interpretation using the SHAP library. The class below is a convenience wrapper that implements multiple plots for tree-based & linear models.

ShapModelInterpreter

Bases: BaseFitComputePlotClass

This class is a wrapper that allows to easily analyse a model's features.

It allows us to plot SHAP feature importance, SHAP summary plot and SHAP dependence plots.

Example:

from sklearn.datasets import make_classification
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from probatus.interpret import ShapModelInterpreter
import numpy as np
import pandas as pd

feature_names = ['f1', 'f2', 'f3', 'f4']

# Prepare two samples
X, y = make_classification(n_samples=5000, n_features=4, random_state=0)
X = pd.DataFrame(X, columns=feature_names)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Prepare and fit model. Remember about class_weight="balanced" or an equivalent.
model = RandomForestClassifier(class_weight='balanced', n_estimators = 100, max_depth=2, random_state=0)
model.fit(X_train, y_train)

# Train ShapModelInterpreter
shap_interpreter = ShapModelInterpreter(model)
feature_importance = shap_interpreter.fit_compute(X_train, X_test, y_train, y_test)

# Make plots
ax1 = shap_interpreter.plot('importance')
ax2 = shap_interpreter.plot('summary')
ax3 = shap_interpreter.plot('dependence', target_columns=['f1', 'f2'])
ax4 = shap_interpreter.plot('sample', samples_index=[X_test.index.tolist()[0]])

Source code in probatus/interpret/model_interpret.py
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
class ShapModelInterpreter(BaseFitComputePlotClass):
    """
    This class is a wrapper that allows to easily analyse a model's features.

    It allows us to plot SHAP feature importance,
        SHAP summary plot and SHAP dependence plots.

    Example:
    ```python
    from sklearn.datasets import make_classification
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.model_selection import train_test_split
    from probatus.interpret import ShapModelInterpreter
    import numpy as np
    import pandas as pd

    feature_names = ['f1', 'f2', 'f3', 'f4']

    # Prepare two samples
    X, y = make_classification(n_samples=5000, n_features=4, random_state=0)
    X = pd.DataFrame(X, columns=feature_names)
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

    # Prepare and fit model. Remember about class_weight="balanced" or an equivalent.
    model = RandomForestClassifier(class_weight='balanced', n_estimators = 100, max_depth=2, random_state=0)
    model.fit(X_train, y_train)

    # Train ShapModelInterpreter
    shap_interpreter = ShapModelInterpreter(model)
    feature_importance = shap_interpreter.fit_compute(X_train, X_test, y_train, y_test)

    # Make plots
    ax1 = shap_interpreter.plot('importance')
    ax2 = shap_interpreter.plot('summary')
    ax3 = shap_interpreter.plot('dependence', target_columns=['f1', 'f2'])
    ax4 = shap_interpreter.plot('sample', samples_index=[X_test.index.tolist()[0]])
    ```

    <img src="../img/model_interpret_importance.png" width="320" />
    <img src="../img/model_interpret_summary.png" width="320" />
    <img src="../img/model_interpret_dep.png" width="320" />
    <img src="../img/model_interpret_sample.png" width="320" />
    """

    def __init__(self, model, scoring="roc_auc", verbose=0, random_state=None):
        """
        Initializes the class.

        Args:
            model (classifier or regressor):
                Model fitted on X_train.

            scoring (string or probatus.utils.Scorer, optional):
                Metric for which the model performance is calculated. It can be either a metric name  aligned with
                predefined classification scorers names in sklearn
                ([link](https://scikit-learn.org/stable/modules/model_evaluation.html)).
                Another option is using probatus.utils.Scorer to define a custom metric.

            verbose (int, optional):
                Controls verbosity of the output:

                - 0 - neither prints nor warnings are shown
                - 1 - only most important warnings
                - 2 - shows all prints and all warnings.

            random_state (int, optional):
                Random state set for the nr of samples. If it is None, the results will not be reproducible. For
                reproducible results set it to an integer.
        """
        self.model = model
        self.scorer = get_single_scorer(scoring)
        self.verbose = verbose
        self.random_state = random_state

    def fit(
        self,
        X_train,
        X_test,
        y_train,
        y_test,
        column_names=None,
        class_names=None,
        **shap_kwargs,
    ):
        """
        Fits the object and calculates the shap values for the provided datasets.

        Args:
            X_train (pd.DataFrame):
                Dataframe containing training data.

            X_test (pd.DataFrame):
                Dataframe containing test data.

            y_train (pd.Series):
                Series of labels for train data.

            y_test (pd.Series):
                Series of labels for test data.

            column_names (None, or list of str, optional):
                List of feature names for the dataset. If None, then column names from the X_train dataframe are used.

            class_names (None, or list of str, optional):
                List of class names e.g. ['neg', 'pos']. If none, the default ['Negative Class', 'Positive Class'] are
                used.

            **shap_kwargs:
                keyword arguments passed to
                [shap.Explainer](https://shap.readthedocs.io/en/latest/generated/shap.Explainer.html#shap.Explainer).
                It also enables `approximate` and `check_additivity` parameters, passed while calculating SHAP values.
                The `approximate=True` causes less accurate, but faster SHAP values calculation, while
                `check_additivity=False` disables the additivity check inside SHAP.
        """

        self.X_train, self.column_names = preprocess_data(
            X_train, X_name="X_train", column_names=column_names, verbose=self.verbose
        )
        self.X_test, _ = preprocess_data(X_test, X_name="X_test", column_names=column_names, verbose=self.verbose)
        self.y_train = preprocess_labels(y_train, y_name="y_train", index=self.X_train.index, verbose=self.verbose)
        self.y_test = preprocess_labels(y_test, y_name="y_test", index=self.X_test.index, verbose=self.verbose)

        # Set class names
        self.class_names = class_names
        if self.class_names is None:
            self.class_names = ["Negative Class", "Positive Class"]

        # Calculate Metrics
        self.train_score = self.scorer.score(self.model, self.X_train, self.y_train)
        self.test_score = self.scorer.score(self.model, self.X_test, self.y_test)

        self.results_text = (
            f"Train {self.scorer.metric_name}: {np.round(self.train_score, 3)},\n"
            f"Test {self.scorer.metric_name}: {np.round(self.test_score, 3)}."
        )

        (
            self.shap_values_train,
            self.expected_value_train,
            self.tdp_train,
        ) = self._prep_shap_related_variables(
            model=self.model,
            X=self.X_train,
            y=self.y_train,
            column_names=self.column_names,
            class_names=self.class_names,
            verbose=self.verbose,
            random_state=self.random_state,
            **shap_kwargs,
        )

        (
            self.shap_values_test,
            self.expected_value_test,
            self.tdp_test,
        ) = self._prep_shap_related_variables(
            model=self.model,
            X=self.X_test,
            y=self.y_test,
            column_names=self.column_names,
            class_names=self.class_names,
            verbose=self.verbose,
            random_state=self.random_state,
            **shap_kwargs,
        )

        self.fitted = True

    @staticmethod
    def _prep_shap_related_variables(
        model,
        X,
        y,
        approximate=False,
        verbose=0,
        random_state=None,
        column_names=None,
        class_names=None,
        **shap_kwargs,
    ):
        """
        The function prepares the variables related to shap that are used to interpret the model.

        Returns:
            (np.array, int, DependencePlotter):
                Shap values, expected value of the explainer, and fitted TreeDependencePlotter for a given dataset.
        """
        shap_values, explainer = shap_calc(
            model,
            X,
            approximate=approximate,
            verbose=verbose,
            random_state=random_state,
            return_explainer=True,
            **shap_kwargs,
        )

        expected_value = explainer.expected_value

        # For sklearn models the expected values consists of two elements (negative_class and positive_class)
        if isinstance(expected_value, list) or isinstance(expected_value, np.ndarray):
            expected_value = expected_value[1]

        # Initialize tree dependence plotter
        tdp = DependencePlotter(model, verbose=verbose).fit(
            X,
            y,
            column_names=column_names,
            class_names=class_names,
            precalc_shap=shap_values,
        )
        return shap_values, expected_value, tdp

    def compute(self, return_scores=False, shap_variance_penalty_factor=None):
        """
        Computes the DataFrame that presents the importance of each feature.

        Args:
            return_scores (bool, optional):
                Flag indicating whether the method should return the train and test score of the model, together with
                the model interpretation report. If true, the output of this method is a tuple of DataFrame, float,
                float.

            shap_variance_penalty_factor (int or float, optional):
                Apply aggregation penalty when computing average of shap values for a given feature.
                Results in a preference for features that have smaller standard deviation of shap
                values (more coherent shap importance). Recommend value 0.5 - 1.0.
                Formula: penalized_shap_mean = (mean_shap - (std_shap * shap_variance_penalty_factor))

        Returns:
            (pd.DataFrame or tuple(pd.DataFrame, float, float)):
                Dataframe with SHAP feature importance, or tuple containing the dataframe, train and test scores of the
                model.
        """
        self._check_if_fitted()

        # Compute SHAP importance
        self.importance_df_train = calculate_shap_importance(
            self.shap_values_train,
            self.column_names,
            output_columns_suffix="_train",
            shap_variance_penalty_factor=shap_variance_penalty_factor,
        )

        self.importance_df_test = calculate_shap_importance(
            self.shap_values_test,
            self.column_names,
            output_columns_suffix="_test",
            shap_variance_penalty_factor=shap_variance_penalty_factor,
        )

        # Concatenate the train and test, sort by test set importance and reorder the columns
        self.importance_df = pd.concat([self.importance_df_train, self.importance_df_test], axis=1).sort_values(
            "mean_abs_shap_value_test", ascending=False
        )[
            [
                "mean_abs_shap_value_test",
                "mean_abs_shap_value_train",
                "mean_shap_value_test",
                "mean_shap_value_train",
            ]
        ]

        if return_scores:
            return self.importance_df, self.train_score, self.test_score
        else:
            return self.importance_df

    def fit_compute(
        self,
        X_train,
        X_test,
        y_train,
        y_test,
        column_names=None,
        class_names=None,
        return_scores=False,
        shap_variance_penalty_factor=None,
        **shap_kwargs,
    ):
        """
        Fits the object and calculates the shap values for the provided datasets.

        Args:
            X_train (pd.DataFrame):
                Dataframe containing training data.

            X_test (pd.DataFrame):
                Dataframe containing test data.

            y_train (pd.Series):
                Series of labels for train data.

            y_test (pd.Series):
                Series of labels for test data.

            column_names (None, or list of str, optional):
                List of feature names for the dataset.
                If None, then column names from the X_train dataframe are used.

            class_names (None, or list of str, optional):
                List of class names e.g. ['neg', 'pos'].
                If none, the default ['Negative Class', 'Positive Class'] are
                used.

            return_scores (bool, optional):
                Flag indicating whether the method should return
                the train and test score of the model,
                together with the model interpretation report. If true,
                the output of this method is a tuple of DataFrame, float,
                float.

            shap_variance_penalty_factor (int or float, optional):
                Apply aggregation penalty when computing average of shap values for a given feature.
                Results in a preference for features that have smaller standard deviation of shap
                values (more coherent shap importance). Recommend value 0.5 - 1.0.
                Formula: penalized_shap_mean = (mean_shap - (std_shap * shap_variance_penalty_factor))

            **shap_kwargs:
                keyword arguments passed to
                [shap.Explainer](https://shap.readthedocs.io/en/latest/generated/shap.Explainer.html#shap.Explainer).
                It also enables `approximate` and `check_additivity` parameters, passed while calculating SHAP values.
                The `approximate=True` causes less accurate, but faster SHAP values calculation, while
                `check_additivity=False` disables the additivity check inside SHAP.

        Returns:
            (pd.DataFrame or tuple(pd.DataFrame, float, float)):
                Dataframe with SHAP feature importance, or tuple containing the dataframe, train and test scores of the
                model.
        """
        self.fit(
            X_train=X_train,
            X_test=X_test,
            y_train=y_train,
            y_test=y_test,
            column_names=column_names,
            class_names=class_names,
            **shap_kwargs,
        )
        return self.compute(return_scores=return_scores, shap_variance_penalty_factor=shap_variance_penalty_factor)

    def plot(self, plot_type, target_set="test", target_columns=None, samples_index=None, show=True, **plot_kwargs):
        """
        Plots the appropriate SHAP plot.

        Args:
            plot_type (str):
                One of the following:

                - `'importance'`: Feature importance plot, SHAP bar summary plot
                - `'summary'`: SHAP Summary plot
                - `'dependence'`: Dependence plot for each feature
                - `'sample'`: Explanation of a given sample in the test data

            target_set (str, optional):
                The set for which the plot should be generated, either `train` or `test` set. We recommend using test
                set, because it is not biased by model training. The train set plots are mainly used to compare with the
                test set plots, whether there are significant differences, which indicate shift in data distribution.

            target_columns (None, str or list of str, optional):
                List of features names, for which the plots should be generated. If None, all features will be plotted.

            samples_index (None, int, list or pd.Index, optional):
                Index of samples to be explained if the `plot_type=sample`.

            show (bool, optional):
                If True, the plots are showed to the user, otherwise they are not shown. Not showing plot can be useful,
                when you want to edit the returned axis, before showing it.

            **plot_kwargs:
                Keyword arguments passed to the plot method. For 'importance' and 'summary' plot_type, the kwargs are
                passed to shap.summary_plot, for 'dependence' plot_type, they are passed to
                probatus.interpret.DependencePlotter.plot method.

        Returns:
            (matplotlib.axes or list(matplotlib.axes)):
                An Axes with the plot, or list of axes when multiple plots are returned.
        """
        # Choose correct columns
        if target_columns is None:
            target_columns = self.column_names

        target_columns = assure_list_of_strings(target_columns, "target_columns")
        target_columns_indices = [self.column_names.index(target_column) for target_column in target_columns]

        # Choose the correct dataset
        if target_set == "test":
            target_X = self.X_test
            target_shap_values = self.shap_values_test
            target_tdp = self.tdp_test
            target_expected_value = self.expected_value_test
        elif target_set == "train":
            target_X = self.X_train
            target_shap_values = self.shap_values_train
            target_tdp = self.tdp_train
            target_expected_value = self.expected_value_train
        else:
            raise (ValueError('The target_set parameter can be either "train" or "test".'))

        if plot_type in ["importance", "summary"]:
            target_X = target_X[target_columns]
            target_shap_values = target_shap_values[:, target_columns_indices]
            # Set summary plot settings
            if plot_type == "importance":
                plot_type = "bar"
                plot_title = f"SHAP Feature Importance for {target_set} set"
            else:
                plot_type = "dot"
                plot_title = f"SHAP Summary plot for {target_set} set"

            summary_plot(
                target_shap_values,
                target_X,
                plot_type=plot_type,
                class_names=self.class_names,
                show=False,
                **plot_kwargs,
            )
            ax = plt.gca()
            ax.set_title(plot_title)

            ax.annotate(
                self.results_text,
                (0, 0),
                (0, -50),
                fontsize=12,
                xycoords="axes fraction",
                textcoords="offset points",
                va="top",
            )
            if show:
                plt.show()
            else:
                plt.close()
        elif plot_type == "dependence":
            ax = []
            for feature_name in target_columns:
                ax.append(target_tdp.plot(feature=feature_name, figsize=(10, 7), show=show, **plot_kwargs))

        elif plot_type == "sample":
            # Ensure the correct samples_index type
            if samples_index is None:
                raise (ValueError("For sample plot, you need to specify the samples_index be plotted plot"))
            elif isinstance(samples_index, int) or isinstance(samples_index, str):
                samples_index = [samples_index]
            elif not (isinstance(samples_index, list) or isinstance(samples_index, pd.Index)):
                raise (TypeError("sample_index must be one of the following: int, str, list or pd.Index"))

            ax = []
            for sample_index in samples_index:
                sample_loc = target_X.index.get_loc(sample_index)

                waterfall_legacy(
                    target_expected_value,
                    target_shap_values[sample_loc, :],
                    target_X.loc[sample_index],
                    show=False,
                    **plot_kwargs,
                )

                plot_title = f"SHAP Sample Explanation of {target_set} sample for index={sample_index}"
                current_ax = plt.gca()
                current_ax.set_title(plot_title)
                ax.append(current_ax)
                if show:
                    plt.show()
                else:
                    plt.close()
        else:
            raise ValueError("Wrong plot type, select from 'importance', 'summary', or 'dependence'")

        if isinstance(ax, list) and len(ax) == 1:
            ax = ax[0]
        return ax

__init__(model, scoring='roc_auc', verbose=0, random_state=None)

Initializes the class.

Parameters:

Name Type Description Default
model classifier or regressor

Model fitted on X_train.

required
scoring string or Scorer

Metric for which the model performance is calculated. It can be either a metric name aligned with predefined classification scorers names in sklearn (link). Another option is using probatus.utils.Scorer to define a custom metric.

'roc_auc'
verbose int

Controls verbosity of the output:

  • 0 - neither prints nor warnings are shown
  • 1 - only most important warnings
  • 2 - shows all prints and all warnings.
0
random_state int

Random state set for the nr of samples. If it is None, the results will not be reproducible. For reproducible results set it to an integer.

None
Source code in probatus/interpret/model_interpret.py
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
def __init__(self, model, scoring="roc_auc", verbose=0, random_state=None):
    """
    Initializes the class.

    Args:
        model (classifier or regressor):
            Model fitted on X_train.

        scoring (string or probatus.utils.Scorer, optional):
            Metric for which the model performance is calculated. It can be either a metric name  aligned with
            predefined classification scorers names in sklearn
            ([link](https://scikit-learn.org/stable/modules/model_evaluation.html)).
            Another option is using probatus.utils.Scorer to define a custom metric.

        verbose (int, optional):
            Controls verbosity of the output:

            - 0 - neither prints nor warnings are shown
            - 1 - only most important warnings
            - 2 - shows all prints and all warnings.

        random_state (int, optional):
            Random state set for the nr of samples. If it is None, the results will not be reproducible. For
            reproducible results set it to an integer.
    """
    self.model = model
    self.scorer = get_single_scorer(scoring)
    self.verbose = verbose
    self.random_state = random_state

compute(return_scores=False, shap_variance_penalty_factor=None)

Computes the DataFrame that presents the importance of each feature.

Parameters:

Name Type Description Default
return_scores bool

Flag indicating whether the method should return the train and test score of the model, together with the model interpretation report. If true, the output of this method is a tuple of DataFrame, float, float.

False
shap_variance_penalty_factor int or float

Apply aggregation penalty when computing average of shap values for a given feature. Results in a preference for features that have smaller standard deviation of shap values (more coherent shap importance). Recommend value 0.5 - 1.0. Formula: penalized_shap_mean = (mean_shap - (std_shap * shap_variance_penalty_factor))

None

Returns:

Type Description
DataFrame or tuple(DataFrame, float, float)

Dataframe with SHAP feature importance, or tuple containing the dataframe, train and test scores of the model.

Source code in probatus/interpret/model_interpret.py
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
def compute(self, return_scores=False, shap_variance_penalty_factor=None):
    """
    Computes the DataFrame that presents the importance of each feature.

    Args:
        return_scores (bool, optional):
            Flag indicating whether the method should return the train and test score of the model, together with
            the model interpretation report. If true, the output of this method is a tuple of DataFrame, float,
            float.

        shap_variance_penalty_factor (int or float, optional):
            Apply aggregation penalty when computing average of shap values for a given feature.
            Results in a preference for features that have smaller standard deviation of shap
            values (more coherent shap importance). Recommend value 0.5 - 1.0.
            Formula: penalized_shap_mean = (mean_shap - (std_shap * shap_variance_penalty_factor))

    Returns:
        (pd.DataFrame or tuple(pd.DataFrame, float, float)):
            Dataframe with SHAP feature importance, or tuple containing the dataframe, train and test scores of the
            model.
    """
    self._check_if_fitted()

    # Compute SHAP importance
    self.importance_df_train = calculate_shap_importance(
        self.shap_values_train,
        self.column_names,
        output_columns_suffix="_train",
        shap_variance_penalty_factor=shap_variance_penalty_factor,
    )

    self.importance_df_test = calculate_shap_importance(
        self.shap_values_test,
        self.column_names,
        output_columns_suffix="_test",
        shap_variance_penalty_factor=shap_variance_penalty_factor,
    )

    # Concatenate the train and test, sort by test set importance and reorder the columns
    self.importance_df = pd.concat([self.importance_df_train, self.importance_df_test], axis=1).sort_values(
        "mean_abs_shap_value_test", ascending=False
    )[
        [
            "mean_abs_shap_value_test",
            "mean_abs_shap_value_train",
            "mean_shap_value_test",
            "mean_shap_value_train",
        ]
    ]

    if return_scores:
        return self.importance_df, self.train_score, self.test_score
    else:
        return self.importance_df

fit(X_train, X_test, y_train, y_test, column_names=None, class_names=None, **shap_kwargs)

Fits the object and calculates the shap values for the provided datasets.

Parameters:

Name Type Description Default
X_train DataFrame

Dataframe containing training data.

required
X_test DataFrame

Dataframe containing test data.

required
y_train Series

Series of labels for train data.

required
y_test Series

Series of labels for test data.

required
column_names None, or list of str

List of feature names for the dataset. If None, then column names from the X_train dataframe are used.

None
class_names None, or list of str

List of class names e.g. ['neg', 'pos']. If none, the default ['Negative Class', 'Positive Class'] are used.

None
**shap_kwargs

keyword arguments passed to shap.Explainer. It also enables approximate and check_additivity parameters, passed while calculating SHAP values. The approximate=True causes less accurate, but faster SHAP values calculation, while check_additivity=False disables the additivity check inside SHAP.

{}
Source code in probatus/interpret/model_interpret.py
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
def fit(
    self,
    X_train,
    X_test,
    y_train,
    y_test,
    column_names=None,
    class_names=None,
    **shap_kwargs,
):
    """
    Fits the object and calculates the shap values for the provided datasets.

    Args:
        X_train (pd.DataFrame):
            Dataframe containing training data.

        X_test (pd.DataFrame):
            Dataframe containing test data.

        y_train (pd.Series):
            Series of labels for train data.

        y_test (pd.Series):
            Series of labels for test data.

        column_names (None, or list of str, optional):
            List of feature names for the dataset. If None, then column names from the X_train dataframe are used.

        class_names (None, or list of str, optional):
            List of class names e.g. ['neg', 'pos']. If none, the default ['Negative Class', 'Positive Class'] are
            used.

        **shap_kwargs:
            keyword arguments passed to
            [shap.Explainer](https://shap.readthedocs.io/en/latest/generated/shap.Explainer.html#shap.Explainer).
            It also enables `approximate` and `check_additivity` parameters, passed while calculating SHAP values.
            The `approximate=True` causes less accurate, but faster SHAP values calculation, while
            `check_additivity=False` disables the additivity check inside SHAP.
    """

    self.X_train, self.column_names = preprocess_data(
        X_train, X_name="X_train", column_names=column_names, verbose=self.verbose
    )
    self.X_test, _ = preprocess_data(X_test, X_name="X_test", column_names=column_names, verbose=self.verbose)
    self.y_train = preprocess_labels(y_train, y_name="y_train", index=self.X_train.index, verbose=self.verbose)
    self.y_test = preprocess_labels(y_test, y_name="y_test", index=self.X_test.index, verbose=self.verbose)

    # Set class names
    self.class_names = class_names
    if self.class_names is None:
        self.class_names = ["Negative Class", "Positive Class"]

    # Calculate Metrics
    self.train_score = self.scorer.score(self.model, self.X_train, self.y_train)
    self.test_score = self.scorer.score(self.model, self.X_test, self.y_test)

    self.results_text = (
        f"Train {self.scorer.metric_name}: {np.round(self.train_score, 3)},\n"
        f"Test {self.scorer.metric_name}: {np.round(self.test_score, 3)}."
    )

    (
        self.shap_values_train,
        self.expected_value_train,
        self.tdp_train,
    ) = self._prep_shap_related_variables(
        model=self.model,
        X=self.X_train,
        y=self.y_train,
        column_names=self.column_names,
        class_names=self.class_names,
        verbose=self.verbose,
        random_state=self.random_state,
        **shap_kwargs,
    )

    (
        self.shap_values_test,
        self.expected_value_test,
        self.tdp_test,
    ) = self._prep_shap_related_variables(
        model=self.model,
        X=self.X_test,
        y=self.y_test,
        column_names=self.column_names,
        class_names=self.class_names,
        verbose=self.verbose,
        random_state=self.random_state,
        **shap_kwargs,
    )

    self.fitted = True

fit_compute(X_train, X_test, y_train, y_test, column_names=None, class_names=None, return_scores=False, shap_variance_penalty_factor=None, **shap_kwargs)

Fits the object and calculates the shap values for the provided datasets.

Parameters:

Name Type Description Default
X_train DataFrame

Dataframe containing training data.

required
X_test DataFrame

Dataframe containing test data.

required
y_train Series

Series of labels for train data.

required
y_test Series

Series of labels for test data.

required
column_names None, or list of str

List of feature names for the dataset. If None, then column names from the X_train dataframe are used.

None
class_names None, or list of str

List of class names e.g. ['neg', 'pos']. If none, the default ['Negative Class', 'Positive Class'] are used.

None
return_scores bool

Flag indicating whether the method should return the train and test score of the model, together with the model interpretation report. If true, the output of this method is a tuple of DataFrame, float, float.

False
shap_variance_penalty_factor int or float

Apply aggregation penalty when computing average of shap values for a given feature. Results in a preference for features that have smaller standard deviation of shap values (more coherent shap importance). Recommend value 0.5 - 1.0. Formula: penalized_shap_mean = (mean_shap - (std_shap * shap_variance_penalty_factor))

None
**shap_kwargs

keyword arguments passed to shap.Explainer. It also enables approximate and check_additivity parameters, passed while calculating SHAP values. The approximate=True causes less accurate, but faster SHAP values calculation, while check_additivity=False disables the additivity check inside SHAP.

{}

Returns:

Type Description
DataFrame or tuple(DataFrame, float, float)

Dataframe with SHAP feature importance, or tuple containing the dataframe, train and test scores of the model.

Source code in probatus/interpret/model_interpret.py
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
def fit_compute(
    self,
    X_train,
    X_test,
    y_train,
    y_test,
    column_names=None,
    class_names=None,
    return_scores=False,
    shap_variance_penalty_factor=None,
    **shap_kwargs,
):
    """
    Fits the object and calculates the shap values for the provided datasets.

    Args:
        X_train (pd.DataFrame):
            Dataframe containing training data.

        X_test (pd.DataFrame):
            Dataframe containing test data.

        y_train (pd.Series):
            Series of labels for train data.

        y_test (pd.Series):
            Series of labels for test data.

        column_names (None, or list of str, optional):
            List of feature names for the dataset.
            If None, then column names from the X_train dataframe are used.

        class_names (None, or list of str, optional):
            List of class names e.g. ['neg', 'pos'].
            If none, the default ['Negative Class', 'Positive Class'] are
            used.

        return_scores (bool, optional):
            Flag indicating whether the method should return
            the train and test score of the model,
            together with the model interpretation report. If true,
            the output of this method is a tuple of DataFrame, float,
            float.

        shap_variance_penalty_factor (int or float, optional):
            Apply aggregation penalty when computing average of shap values for a given feature.
            Results in a preference for features that have smaller standard deviation of shap
            values (more coherent shap importance). Recommend value 0.5 - 1.0.
            Formula: penalized_shap_mean = (mean_shap - (std_shap * shap_variance_penalty_factor))

        **shap_kwargs:
            keyword arguments passed to
            [shap.Explainer](https://shap.readthedocs.io/en/latest/generated/shap.Explainer.html#shap.Explainer).
            It also enables `approximate` and `check_additivity` parameters, passed while calculating SHAP values.
            The `approximate=True` causes less accurate, but faster SHAP values calculation, while
            `check_additivity=False` disables the additivity check inside SHAP.

    Returns:
        (pd.DataFrame or tuple(pd.DataFrame, float, float)):
            Dataframe with SHAP feature importance, or tuple containing the dataframe, train and test scores of the
            model.
    """
    self.fit(
        X_train=X_train,
        X_test=X_test,
        y_train=y_train,
        y_test=y_test,
        column_names=column_names,
        class_names=class_names,
        **shap_kwargs,
    )
    return self.compute(return_scores=return_scores, shap_variance_penalty_factor=shap_variance_penalty_factor)

plot(plot_type, target_set='test', target_columns=None, samples_index=None, show=True, **plot_kwargs)

Plots the appropriate SHAP plot.

Parameters:

Name Type Description Default
plot_type str

One of the following:

  • 'importance': Feature importance plot, SHAP bar summary plot
  • 'summary': SHAP Summary plot
  • 'dependence': Dependence plot for each feature
  • 'sample': Explanation of a given sample in the test data
required
target_set str

The set for which the plot should be generated, either train or test set. We recommend using test set, because it is not biased by model training. The train set plots are mainly used to compare with the test set plots, whether there are significant differences, which indicate shift in data distribution.

'test'
target_columns None, str or list of str

List of features names, for which the plots should be generated. If None, all features will be plotted.

None
samples_index (None, int, list or Index)

Index of samples to be explained if the plot_type=sample.

None
show bool

If True, the plots are showed to the user, otherwise they are not shown. Not showing plot can be useful, when you want to edit the returned axis, before showing it.

True
**plot_kwargs

Keyword arguments passed to the plot method. For 'importance' and 'summary' plot_type, the kwargs are passed to shap.summary_plot, for 'dependence' plot_type, they are passed to probatus.interpret.DependencePlotter.plot method.

{}

Returns:

Type Description
axes or list(axes)

An Axes with the plot, or list of axes when multiple plots are returned.

Source code in probatus/interpret/model_interpret.py
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
def plot(self, plot_type, target_set="test", target_columns=None, samples_index=None, show=True, **plot_kwargs):
    """
    Plots the appropriate SHAP plot.

    Args:
        plot_type (str):
            One of the following:

            - `'importance'`: Feature importance plot, SHAP bar summary plot
            - `'summary'`: SHAP Summary plot
            - `'dependence'`: Dependence plot for each feature
            - `'sample'`: Explanation of a given sample in the test data

        target_set (str, optional):
            The set for which the plot should be generated, either `train` or `test` set. We recommend using test
            set, because it is not biased by model training. The train set plots are mainly used to compare with the
            test set plots, whether there are significant differences, which indicate shift in data distribution.

        target_columns (None, str or list of str, optional):
            List of features names, for which the plots should be generated. If None, all features will be plotted.

        samples_index (None, int, list or pd.Index, optional):
            Index of samples to be explained if the `plot_type=sample`.

        show (bool, optional):
            If True, the plots are showed to the user, otherwise they are not shown. Not showing plot can be useful,
            when you want to edit the returned axis, before showing it.

        **plot_kwargs:
            Keyword arguments passed to the plot method. For 'importance' and 'summary' plot_type, the kwargs are
            passed to shap.summary_plot, for 'dependence' plot_type, they are passed to
            probatus.interpret.DependencePlotter.plot method.

    Returns:
        (matplotlib.axes or list(matplotlib.axes)):
            An Axes with the plot, or list of axes when multiple plots are returned.
    """
    # Choose correct columns
    if target_columns is None:
        target_columns = self.column_names

    target_columns = assure_list_of_strings(target_columns, "target_columns")
    target_columns_indices = [self.column_names.index(target_column) for target_column in target_columns]

    # Choose the correct dataset
    if target_set == "test":
        target_X = self.X_test
        target_shap_values = self.shap_values_test
        target_tdp = self.tdp_test
        target_expected_value = self.expected_value_test
    elif target_set == "train":
        target_X = self.X_train
        target_shap_values = self.shap_values_train
        target_tdp = self.tdp_train
        target_expected_value = self.expected_value_train
    else:
        raise (ValueError('The target_set parameter can be either "train" or "test".'))

    if plot_type in ["importance", "summary"]:
        target_X = target_X[target_columns]
        target_shap_values = target_shap_values[:, target_columns_indices]
        # Set summary plot settings
        if plot_type == "importance":
            plot_type = "bar"
            plot_title = f"SHAP Feature Importance for {target_set} set"
        else:
            plot_type = "dot"
            plot_title = f"SHAP Summary plot for {target_set} set"

        summary_plot(
            target_shap_values,
            target_X,
            plot_type=plot_type,
            class_names=self.class_names,
            show=False,
            **plot_kwargs,
        )
        ax = plt.gca()
        ax.set_title(plot_title)

        ax.annotate(
            self.results_text,
            (0, 0),
            (0, -50),
            fontsize=12,
            xycoords="axes fraction",
            textcoords="offset points",
            va="top",
        )
        if show:
            plt.show()
        else:
            plt.close()
    elif plot_type == "dependence":
        ax = []
        for feature_name in target_columns:
            ax.append(target_tdp.plot(feature=feature_name, figsize=(10, 7), show=show, **plot_kwargs))

    elif plot_type == "sample":
        # Ensure the correct samples_index type
        if samples_index is None:
            raise (ValueError("For sample plot, you need to specify the samples_index be plotted plot"))
        elif isinstance(samples_index, int) or isinstance(samples_index, str):
            samples_index = [samples_index]
        elif not (isinstance(samples_index, list) or isinstance(samples_index, pd.Index)):
            raise (TypeError("sample_index must be one of the following: int, str, list or pd.Index"))

        ax = []
        for sample_index in samples_index:
            sample_loc = target_X.index.get_loc(sample_index)

            waterfall_legacy(
                target_expected_value,
                target_shap_values[sample_loc, :],
                target_X.loc[sample_index],
                show=False,
                **plot_kwargs,
            )

            plot_title = f"SHAP Sample Explanation of {target_set} sample for index={sample_index}"
            current_ax = plt.gca()
            current_ax.set_title(plot_title)
            ax.append(current_ax)
            if show:
                plt.show()
            else:
                plt.close()
    else:
        raise ValueError("Wrong plot type, select from 'importance', 'summary', or 'dependence'")

    if isinstance(ax, list) and len(ax) == 1:
        ax = ax[0]
    return ax

DependencePlotter

Bases: BaseFitComputePlotClass

Plotter used to plot SHAP dependence plot together with the target rates.

Currently it supports tree-based and linear models.

Parameters:

Name Type Description Default
model

classifier for which interpretation is done.

required

Example:

from sklearn.datasets import make_classification
from sklearn.ensemble import RandomForestClassifier
from probatus.interpret import DependencePlotter

X, y = make_classification(n_samples=15, n_features=3, n_informative=3, n_redundant=0, random_state=42)
model = RandomForestClassifier().fit(X, y)
bdp = DependencePlotter(model)
shap_values = bdp.fit_compute(X, y)

bdp.plot(feature=2)

Source code in probatus/interpret/shap_dependence.py
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
class DependencePlotter(BaseFitComputePlotClass):
    """
    Plotter used to plot SHAP dependence plot together with the target rates.

    Currently it supports tree-based and linear models.

    Args:
        model: classifier for which interpretation is done.

    Example:
    ```python
    from sklearn.datasets import make_classification
    from sklearn.ensemble import RandomForestClassifier
    from probatus.interpret import DependencePlotter

    X, y = make_classification(n_samples=15, n_features=3, n_informative=3, n_redundant=0, random_state=42)
    model = RandomForestClassifier().fit(X, y)
    bdp = DependencePlotter(model)
    shap_values = bdp.fit_compute(X, y)

    bdp.plot(feature=2)
    ```

    <img src="../img/model_interpret_dep.png"/>
    """

    def __init__(self, model, verbose=0, random_state=None):
        """
        Initializes the class.

        Args:
            model (model object):
                regression or classification model or pipeline.

            verbose (int, optional):
                Controls verbosity of the output:

                - 0 - neither prints nor warnings are shown
                - 1 - only most important warnings
                - 2 - shows all prints and all warnings.

            random_state (int, optional):
                Random state set for the nr of samples. If it is None, the results will not be reproducible. For
                reproducible results set it to an integer.
        """
        self.model = model
        self.verbose = verbose
        self.random_state = random_state

    def __repr__(self):
        """
        Represent string method.
        """
        return f"Shap dependence plotter for {self.model.__class__.__name__}"

    def fit(self, X, y, column_names=None, class_names=None, precalc_shap=None, **shap_kwargs):
        """
        Fits the plotter to the model and data by computing the shap values.

        If the shap_values are passed, they do not need to be computed.

        Args:
            X (pd.DataFrame): input variables.

            y (pd.Series): target variable.

            column_names (None, or list of str, optional):
                List of feature names for the dataset. If None, then column names from the X_train dataframe are used.

            class_names (None, or list of str, optional):
                List of class names e.g. ['neg', 'pos']. If none, the default ['Negative Class', 'Positive Class'] are
                used.

            precalc_shap (Optional, None or np.array):
                Precalculated shap values, If provided they don't need to be computed.

            **shap_kwargs:
                keyword arguments passed to
                [shap.Explainer](https://shap.readthedocs.io/en/latest/generated/shap.Explainer.html#shap.Explainer).
                It also enables `approximate` and `check_additivity` parameters, passed while calculating SHAP values.
                The `approximate=True` causes less accurate, but faster SHAP values calculation, while
                `check_additivity=False` disables the additivity check inside SHAP.
        """
        self.X, self.column_names = preprocess_data(X, X_name="X", column_names=column_names, verbose=self.verbose)
        self.y = preprocess_labels(y, y_name="y", index=self.X.index, verbose=self.verbose)

        # Set class names
        self.class_names = class_names
        if self.class_names is None:
            self.class_names = ["Negative Class", "Positive Class"]

        self.shap_vals_df = shap_to_df(
            self.model,
            self.X,
            precalc_shap=precalc_shap,
            verbose=self.verbose,
            random_state=self.random_state,
            **shap_kwargs,
        )

        self.fitted = True
        return self

    def compute(self):
        """
        Computes the report returned to the user, namely the SHAP values generated on the dataset.

        Returns:
            (pd.DataFrame):
                SHAP Values for X.
        """
        self._check_if_fitted()
        return self.shap_vals_df

    def fit_compute(self, X, y, column_names=None, class_names=None, precalc_shap=None, **shap_kwargs):
        """
        Fits the plotter to the model and data by computing the shap values.

        If the shap_values are passed, they do not need to be computed

        Args:
            X (pd.DataFrame):
                Provided dataset.

            y (pd.Series):
                Labels for X.

            column_names (None, or list of str, optional):
                List of feature names for the dataset. If None, then column names from the X_train dataframe are used.

            class_names (None, or list of str, optional):
                List of class names e.g. ['neg', 'pos']. If none, the default ['Negative Class', 'Positive Class'] are
                used.

            precalc_shap (Optional, None or np.array):
                Precalculated shap values, If provided they don't need to be computed.

            **shap_kwargs:
                keyword arguments passed to
                [shap.Explainer](https://shap.readthedocs.io/en/latest/generated/shap.Explainer.html#shap.Explainer).
                It also enables `approximate` and `check_additivity` parameters, passed while calculating SHAP values.
                The `approximate=True` causes less accurate, but faster SHAP values calculation, while
                `check_additivity=False` disables the additivity check inside SHAP.

        Returns:
            (pd.DataFrame):
                SHAP Values for X.
        """
        self.fit(X, y, column_names=column_names, class_names=class_names, precalc_shap=precalc_shap, **shap_kwargs)
        return self.compute()

    def plot(
        self,
        feature,
        figsize=(15, 10),
        bins=10,
        show=True,
        min_q=0,
        max_q=1,
        alpha=1.0,
    ):
        """
        Plots the shap values for data points for a given feature, as well as the target rate and values distribution.

        Args:
            feature (str or int):
                Feature name of the feature to be analyzed.

            figsize ((float, float), optional):
                Tuple specifying size (width, height) of resulting figure in inches.

            bins (int or list[float]):
                Number of bins or boundaries of bins (supplied in list) for target-rate plot.

            show (bool, optional):
                If True, the plots are showed to the user, otherwise they are not shown. Not showing plot can be useful,
                when you want to edit the returned axis, before showing it.

            min_q (float, optional):
                Optional minimum quantile from which to consider values, used for plotting under outliers.

            max_q (float, optional):
                Optional maximum quantile until which data points are considered, used for plotting under outliers.

            alpha (float, optional):
                Optional alpha blending value, between 0 (transparent) and 1 (opaque).

        Returns
            (list(matplotlib.axes)):
                List of axes that include the plots.
        """
        self._check_if_fitted()
        if min_q >= max_q:
            raise ValueError("min_q must be smaller than max_q")
        if feature not in self.X.columns:
            raise ValueError("Feature not recognized")
        if (alpha < 0) or (alpha > 1):
            raise ValueError("alpha must be a float value between 0 and 1")

        self.min_q, self.max_q, self.alpha = min_q, max_q, alpha

        _ = plt.figure(1, figsize=figsize)
        ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2)
        ax2 = plt.subplot2grid((3, 1), (2, 0))

        self._dependence_plot(feature=feature, ax=ax1)
        self._target_rate_plot(feature=feature, bins=bins, ax=ax2)

        ax2.set_xlim(ax1.get_xlim())

        if show:
            plt.show()
        else:
            plt.close()

        return [ax1, ax2]

    def _dependence_plot(self, feature, ax=None):
        """
        Plots shap values for data points with respect to specified feature.

        Args:
            feature (str or int):
                Feature for which dependence plot is to be created.

            ax (matplotlib.pyplot.axes, optional):
                Optional axis on which to draw plot.

        Returns:
            (matplotlib.pyplot.axes):
                Axes on which plot is drawn.
        """
        if isinstance(feature, int):
            feature = self.column_names[feature]

        X, y, shap_val = self._get_X_y_shap_with_q_cut(feature=feature)

        ax.scatter(X[y == 0], shap_val[y == 0], label=self.class_names[0], color="lightblue", alpha=self.alpha)

        ax.scatter(X[y == 1], shap_val[y == 1], label=self.class_names[1], color="darkred", alpha=self.alpha)

        ax.set_ylabel("Shap value")
        ax.set_title(f"Dependence plot for {feature} feature")
        ax.legend()

        return ax

    def _target_rate_plot(self, feature, bins=10, ax=None):
        """
        Plots the distributions of the specific features, as well as the target rate as function of the feature.

        Args:
            feature (str or int):
                Feature for which to create target rate plot.

            bins (int or list[float]), optional:
                Number of bins or boundaries of desired bins in list.

            ax (matplotlib.pyplot.axes, optional):
                Optional axis on which to draw plot.

        Returns:
            (list[float], matplotlib.pyplot.axes, float):
                Tuple of boundaries of bins used, axis on which plot is drawn, total ratio of target (positive over
                negative).
        """
        x, y, shap_val = self._get_X_y_shap_with_q_cut(feature=feature)

        # Create bins if not explicitly supplied
        if isinstance(bins, int):
            simple_binner = KBinsDiscretizer(n_bins=bins, encode="ordinal", strategy="uniform").fit(
                np.array(x).reshape(-1, 1)
            )
            bins = simple_binner.bin_edges_[0]
            bins[0], bins[-1] = -np.inf, np.inf

        # Determine bin for datapoints
        bins[-1] = bins[-1] + 1
        indices = np.digitize(x, bins)
        # Create dataframe with binned data
        dfs = pd.DataFrame({feature: x, "y": y, "bin_index": pd.Series(indices, index=x.index)}).groupby(
            "bin_index", as_index=True
        )

        # Extract target ratio and mean feature value
        target_ratio = dfs["y"].mean()
        x_vals = dfs[feature].mean()

        # Transform the first and last bin to work with plt.hist method
        if bins[0] == -np.inf:
            bins[0] = x.min()
        if bins[-1] == np.inf:
            bins[-1] = x.max()

        # Plot target rate
        ax.hist(x, bins=bins, lw=2, alpha=0.4)
        ax.set_ylabel("Counts")
        ax2 = ax.twinx()
        ax2.plot(x_vals, target_ratio, color="red")
        ax2.set_ylabel("Target rate", color="red", fontsize=12)
        ax2.set_xlim(x.min(), x.max())
        ax.set_xlabel(f"{feature} feature values")

        return bins, ax, target_ratio

    def _get_X_y_shap_with_q_cut(self, feature):
        """
        Extracts all X, y pairs and shap values that fall within defined quantiles of the feature.

        Args:
            feature (str): feature to return values for

        Returns:
            x (pd.Series): selected datapoints
            y (pd.Series): target values of selected datapoints
            shap_val (pd.Series): shap values of selected datapoints
        """
        self._check_if_fitted()
        if feature not in self.X.columns:
            raise ValueError("Feature not found in data")

        # Prepare arrays
        x = self.X[feature]
        y = self.y
        shap_val = self.shap_vals_df[feature]

        # Determine quantile ranges
        x_min = x.quantile(self.min_q)
        x_max = x.quantile(self.max_q)

        # Create filter
        filter = (x >= x_min) & (x <= x_max)

        # Filter and return terms
        return x[filter], y[filter], shap_val[filter]

__init__(model, verbose=0, random_state=None)

Initializes the class.

Parameters:

Name Type Description Default
model model object

regression or classification model or pipeline.

required
verbose int

Controls verbosity of the output:

  • 0 - neither prints nor warnings are shown
  • 1 - only most important warnings
  • 2 - shows all prints and all warnings.
0
random_state int

Random state set for the nr of samples. If it is None, the results will not be reproducible. For reproducible results set it to an integer.

None
Source code in probatus/interpret/shap_dependence.py
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
def __init__(self, model, verbose=0, random_state=None):
    """
    Initializes the class.

    Args:
        model (model object):
            regression or classification model or pipeline.

        verbose (int, optional):
            Controls verbosity of the output:

            - 0 - neither prints nor warnings are shown
            - 1 - only most important warnings
            - 2 - shows all prints and all warnings.

        random_state (int, optional):
            Random state set for the nr of samples. If it is None, the results will not be reproducible. For
            reproducible results set it to an integer.
    """
    self.model = model
    self.verbose = verbose
    self.random_state = random_state

__repr__()

Represent string method.

Source code in probatus/interpret/shap_dependence.py
58
59
60
61
62
def __repr__(self):
    """
    Represent string method.
    """
    return f"Shap dependence plotter for {self.model.__class__.__name__}"

compute()

Computes the report returned to the user, namely the SHAP values generated on the dataset.

Returns:

Type Description
DataFrame

SHAP Values for X.

Source code in probatus/interpret/shap_dependence.py
112
113
114
115
116
117
118
119
120
121
def compute(self):
    """
    Computes the report returned to the user, namely the SHAP values generated on the dataset.

    Returns:
        (pd.DataFrame):
            SHAP Values for X.
    """
    self._check_if_fitted()
    return self.shap_vals_df

fit(X, y, column_names=None, class_names=None, precalc_shap=None, **shap_kwargs)

Fits the plotter to the model and data by computing the shap values.

If the shap_values are passed, they do not need to be computed.

Parameters:

Name Type Description Default
X DataFrame

input variables.

required
y Series

target variable.

required
column_names None, or list of str

List of feature names for the dataset. If None, then column names from the X_train dataframe are used.

None
class_names None, or list of str

List of class names e.g. ['neg', 'pos']. If none, the default ['Negative Class', 'Positive Class'] are used.

None
precalc_shap (Optional, None or array)

Precalculated shap values, If provided they don't need to be computed.

None
**shap_kwargs

keyword arguments passed to shap.Explainer. It also enables approximate and check_additivity parameters, passed while calculating SHAP values. The approximate=True causes less accurate, but faster SHAP values calculation, while check_additivity=False disables the additivity check inside SHAP.

{}
Source code in probatus/interpret/shap_dependence.py
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
def fit(self, X, y, column_names=None, class_names=None, precalc_shap=None, **shap_kwargs):
    """
    Fits the plotter to the model and data by computing the shap values.

    If the shap_values are passed, they do not need to be computed.

    Args:
        X (pd.DataFrame): input variables.

        y (pd.Series): target variable.

        column_names (None, or list of str, optional):
            List of feature names for the dataset. If None, then column names from the X_train dataframe are used.

        class_names (None, or list of str, optional):
            List of class names e.g. ['neg', 'pos']. If none, the default ['Negative Class', 'Positive Class'] are
            used.

        precalc_shap (Optional, None or np.array):
            Precalculated shap values, If provided they don't need to be computed.

        **shap_kwargs:
            keyword arguments passed to
            [shap.Explainer](https://shap.readthedocs.io/en/latest/generated/shap.Explainer.html#shap.Explainer).
            It also enables `approximate` and `check_additivity` parameters, passed while calculating SHAP values.
            The `approximate=True` causes less accurate, but faster SHAP values calculation, while
            `check_additivity=False` disables the additivity check inside SHAP.
    """
    self.X, self.column_names = preprocess_data(X, X_name="X", column_names=column_names, verbose=self.verbose)
    self.y = preprocess_labels(y, y_name="y", index=self.X.index, verbose=self.verbose)

    # Set class names
    self.class_names = class_names
    if self.class_names is None:
        self.class_names = ["Negative Class", "Positive Class"]

    self.shap_vals_df = shap_to_df(
        self.model,
        self.X,
        precalc_shap=precalc_shap,
        verbose=self.verbose,
        random_state=self.random_state,
        **shap_kwargs,
    )

    self.fitted = True
    return self

fit_compute(X, y, column_names=None, class_names=None, precalc_shap=None, **shap_kwargs)

Fits the plotter to the model and data by computing the shap values.

If the shap_values are passed, they do not need to be computed

Parameters:

Name Type Description Default
X DataFrame

Provided dataset.

required
y Series

Labels for X.

required
column_names None, or list of str

List of feature names for the dataset. If None, then column names from the X_train dataframe are used.

None
class_names None, or list of str

List of class names e.g. ['neg', 'pos']. If none, the default ['Negative Class', 'Positive Class'] are used.

None
precalc_shap (Optional, None or array)

Precalculated shap values, If provided they don't need to be computed.

None
**shap_kwargs

keyword arguments passed to shap.Explainer. It also enables approximate and check_additivity parameters, passed while calculating SHAP values. The approximate=True causes less accurate, but faster SHAP values calculation, while check_additivity=False disables the additivity check inside SHAP.

{}

Returns:

Type Description
DataFrame

SHAP Values for X.

Source code in probatus/interpret/shap_dependence.py
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
def fit_compute(self, X, y, column_names=None, class_names=None, precalc_shap=None, **shap_kwargs):
    """
    Fits the plotter to the model and data by computing the shap values.

    If the shap_values are passed, they do not need to be computed

    Args:
        X (pd.DataFrame):
            Provided dataset.

        y (pd.Series):
            Labels for X.

        column_names (None, or list of str, optional):
            List of feature names for the dataset. If None, then column names from the X_train dataframe are used.

        class_names (None, or list of str, optional):
            List of class names e.g. ['neg', 'pos']. If none, the default ['Negative Class', 'Positive Class'] are
            used.

        precalc_shap (Optional, None or np.array):
            Precalculated shap values, If provided they don't need to be computed.

        **shap_kwargs:
            keyword arguments passed to
            [shap.Explainer](https://shap.readthedocs.io/en/latest/generated/shap.Explainer.html#shap.Explainer).
            It also enables `approximate` and `check_additivity` parameters, passed while calculating SHAP values.
            The `approximate=True` causes less accurate, but faster SHAP values calculation, while
            `check_additivity=False` disables the additivity check inside SHAP.

    Returns:
        (pd.DataFrame):
            SHAP Values for X.
    """
    self.fit(X, y, column_names=column_names, class_names=class_names, precalc_shap=precalc_shap, **shap_kwargs)
    return self.compute()

plot(feature, figsize=(15, 10), bins=10, show=True, min_q=0, max_q=1, alpha=1.0)

Plots the shap values for data points for a given feature, as well as the target rate and values distribution.

Parameters:

Name Type Description Default
feature str or int

Feature name of the feature to be analyzed.

required
figsize float, float)

Tuple specifying size (width, height) of resulting figure in inches.

(15, 10)
bins int or list[float]

Number of bins or boundaries of bins (supplied in list) for target-rate plot.

10
show bool

If True, the plots are showed to the user, otherwise they are not shown. Not showing plot can be useful, when you want to edit the returned axis, before showing it.

True
min_q float

Optional minimum quantile from which to consider values, used for plotting under outliers.

0
max_q float

Optional maximum quantile until which data points are considered, used for plotting under outliers.

1
alpha float

Optional alpha blending value, between 0 (transparent) and 1 (opaque).

1.0

Returns (list(matplotlib.axes)): List of axes that include the plots.

Source code in probatus/interpret/shap_dependence.py
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
def plot(
    self,
    feature,
    figsize=(15, 10),
    bins=10,
    show=True,
    min_q=0,
    max_q=1,
    alpha=1.0,
):
    """
    Plots the shap values for data points for a given feature, as well as the target rate and values distribution.

    Args:
        feature (str or int):
            Feature name of the feature to be analyzed.

        figsize ((float, float), optional):
            Tuple specifying size (width, height) of resulting figure in inches.

        bins (int or list[float]):
            Number of bins or boundaries of bins (supplied in list) for target-rate plot.

        show (bool, optional):
            If True, the plots are showed to the user, otherwise they are not shown. Not showing plot can be useful,
            when you want to edit the returned axis, before showing it.

        min_q (float, optional):
            Optional minimum quantile from which to consider values, used for plotting under outliers.

        max_q (float, optional):
            Optional maximum quantile until which data points are considered, used for plotting under outliers.

        alpha (float, optional):
            Optional alpha blending value, between 0 (transparent) and 1 (opaque).

    Returns
        (list(matplotlib.axes)):
            List of axes that include the plots.
    """
    self._check_if_fitted()
    if min_q >= max_q:
        raise ValueError("min_q must be smaller than max_q")
    if feature not in self.X.columns:
        raise ValueError("Feature not recognized")
    if (alpha < 0) or (alpha > 1):
        raise ValueError("alpha must be a float value between 0 and 1")

    self.min_q, self.max_q, self.alpha = min_q, max_q, alpha

    _ = plt.figure(1, figsize=figsize)
    ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2)
    ax2 = plt.subplot2grid((3, 1), (2, 0))

    self._dependence_plot(feature=feature, ax=ax1)
    self._target_rate_plot(feature=feature, bins=bins, ax=ax2)

    ax2.set_xlim(ax1.get_xlim())

    if show:
        plt.show()
    else:
        plt.close()

    return [ax1, ax2]